精英家教网 > 初中数学 > 题目详情

【题目】如图.在平行四边形中,分别为的中点,连结

求证:

1

2)若,证明:四边形是菱形。

【答案】1)见解析;(2)见解析

【解析】

1)根据平行四边形的性质可得AD=BC,∠A=CDC=AB,再结合条件可得AE=CF,再利用SAS证明ADE≌△CBF即可;

2)首先利用平行四边形的性质证明DFEBDF=EB,可得四边形DEBF是平行四边形,再利用直角三角形的性质可得DE=AB,进而可得DE=EB,从而可证明四边形是菱形.

证明:(1)∵四边形ABCD是平行四边形,

AD=BC,∠A=CDC=AB

EF分别为边ABCD的中点,

DF=CF=DCAE=BE=AB

AE=CF

ADECBF

∴△ADE≌△CBFSAS);

2)∵边形ABCD是平行四边形,

DC=ABCDAB

DFEB

EF分别为边ABCD的中点,

DF=CF=DCAE=BE=AB

DF=EB

∴四边形DEBF是平行四边形,

∵∠ADB=90°

DE=AB

DE=EB

∴四边形DEBF是菱形.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知抛物线y=ax2+bx+3经过A(30)B(10)两点(如图1),顶点为M.

(1)ab的值;

(2)设抛物线与y轴的交点为Q(如图1),直线y=2x+9与直线OM交于点D. 现将抛物线平移,保持顶点在直线OD.当抛物线的顶点平移到D点时,Q点移至N点,求抛物线上的两点MQ间所夹的曲线MQ扫过的区域的面积;

(3)设直线y=2x+9y轴交于点C,与直线OM交于点D(如图2).现将抛物线平移,保持顶点在直线OD.若平移的抛物线与射线CD(含端点C)没有公共点时,试探求其顶点的横坐标h的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】对于一个函数,当自变量xn时,函数值y等于4n,我们称n为这个函数的二合点,如果二次函数ymx2+x+1有两个相异的二合点x1x2,且x1x21,则m的取值范围是______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:均为等腰直角三角形,,连接.

1)如图1所示,线段的数量关系是_____,位置关系是_____

2)在图1中,若点MPN分别为的中点,连接,请判断的形状,并说明理由;

3)如图2所示,若MNP分别为上的点,且满足,连接,则线段长度是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某海防哨所发现在它的北偏西,距离为处有一艘船,该船向正东方向航行,经过到达哨所东北方向的处,则该船的航速为每小时___.(精确到

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】天门山索道是世界最长的高山客运索道,位于张家界天门山景区.在一次检修维护中,检修人员从索道A处开始,沿ABC路线对索道进行检修维护.如图:已知米,米,AB与水平线的夹角是BC与水平线的夹角是.求:本次检修中,检修人员上升的垂直高度是多少米?(结果精确到1米,参考数据:)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线经过点和点,与轴交于点.

1)求此抛物线的解析式;

2)若点是直线下方的抛物线上一动点(不点重合),过点轴的平行线交直线于点,设点的横坐标为.

①用含的代数式表示线段的长;

②连接,求的面积最大时点的坐标;

3)设抛物线的对称轴与交于点,点是抛物线的对称轴上一点,轴上一点,是否存在这样的点和点,使得以点为顶点的四边形是菱形?如果存在,请直接写出点的坐标;如果不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,点E在⊙O上,C为的中点,过点C作直线CD⊥AE于D,连接AC,BC.

(1试判断直线CD与⊙O的位置关系,并说明理由;

(2若AD=2,AC=,求AB的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】海中有一个小岛P,它的周围18海里内有暗礁,渔船跟踪鱼群由西向东航行,在点A测得小岛P在北偏东60°方向上,航行12海里到达B点,这时测得小岛P在北偏东45°方向上.如果渔船不改变航线继续向东航行,有没有触礁危险?请说明理由.

查看答案和解析>>

同步练习册答案