精英家教网 > 初中数学 > 题目详情
16.下面是某同学给出一种证法,请你将解答中缺少的条件、结论或证明理由补充完整:
证明:∵CD与EF相交于点H(已知) 
∴∠1=∠2(对顶角相等) 
∵AB∥CD(已知)
∴∠2=∠EGB(两直线平行,同位角相等)
∵GN是∠EGB的平分线,(已知)
∴∠4=$\frac{1}{2}$∠BGE (角平分线定义)
∵∠1=∠2,∠2=∠EGB(已证)
∴∠1=∠EGB(等量代换)
∵$∠4=\frac{1}{2}$∠EGB(已证)  
∴∠4=$\frac{1}{2}$∠1(等量代换)

分析 由CD与EF相交于点H得到∠1=∠2,根据平行线的性质∠2=∠EGB,由角平分线的性质得到∠4=$\frac{1}{2}∠$BGE然后根据等量代换得到结论.

解答 证明:∵CD与EF相交于点H(已知)
∴∠1=∠2(对顶角相等)
∵AB∥CD(已知)
∴∠2=∠EGB(两直线平行,同位角相等)
∵GN是∠EGB的平分线,(已知)
∴∠4=$\frac{1}{2}∠$BGE(角平分线定义)
∵∠1=∠2,∠2=∠EGB(已证)
∴∠1=∠EGB(等量代换)
∵$∠4=\frac{1}{2}∠$EGB,(已证)
∴∠4=$\frac{1}{2}$∠1(等量代换),
故答案为:对顶角相等,两直线平行,同位角相等,$\frac{1}{2}$∠EGB,等量代换,∠4=$\frac{1}{2}$∠EGB.

点评 本题考查了平行线的性质,角平分线的性质,对顶角的性质,熟练掌握性质定理是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

6.“端午节“是我国的传统佳节,民间历来有吃“粽子”的习俗,某市食品企业计划在今年推出A、B、C、D四种口味的粽子,该企业为了解市民对这四种不同口味粽子的喜爱情况,在端午节前随机抽取了某社区10%的居民调查,并将调查情况绘制成如图两幅不完整的统计图.
(1)这个社区的居民共有多少人?
(2)喜欢吃C种粽子对应扇形的圆心角的度数是72°,并补全条形统计图;
(3)若该市有20万居民,请估计爱吃C种粽子的人数.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

7.如图,已知FD∥BE,则∠1+∠2-∠3的值为(  )
A.90°B.135°C.150°D.180°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.通过类比联想、引申拓展研究典型题目,可达到解一题知一类的目的.下面是一个案例,请补充完整.
原题:如图1,点E、F分别在正方形ABCD的边BC、CD上,∠EAF=45°,连接EF,则EF=BE+DF,试说明理由.
(1)思路梳理
∵AB=AD,
∴把△ABE绕点A逆时针旋转90°至△ADG,可使AB与AD重合.
∵∠ADC=∠B=90°,
∴∠FDG=180°,点F、D、G共线.
根据SAS,易证△AFG≌△AFE,得EF=BE+DF.
(2)类比引申
如图2,四边形ABCD中,AB=AD,∠BAD=90°点E、F分别在边BC、CD上,∠EAF=45°.若∠B、∠D都不是直角,则当∠B与∠D满足等量关系∠B+∠D=180°时,仍有EF=BE+DF.
(3)联想拓展
如图3,在△ABC中,∠BAC=90°,AB=AC,点D、E均在边BC上,且∠DAE=45°.猜想BD、DE、EC应满足的等量关系,并写出推理过程.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.2008年毕业于四川大学的李爱民,第一个月领到3000元工资,自己留下500元作为生活费,剩下2500元全部用来做以下事情:他决定拿出大于500元但小于550元的资金为他父母买礼品,感谢他们对自己的养育之恩,其余资金用于资助家乡汶川大地震中受灾的50名小朋友,给每位小朋友买一身衣服或一双鞋作为对他们的关爱和鼓励.已知每身衣服的价钱为45元,每双鞋的价钱为25元.问他有几种买衣服和鞋的方案?分别为哪几种?

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

1.已知:△ABC中,AB=4,AC=3,BC=$\sqrt{7}$,则△ABC的面积是$\frac{3}{2}$$\sqrt{7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.【提出问题】
(1)已知:菱形ABCD的变长为4,∠ADC=60°,△PEF为等边三角形,当点P与点D重合,点E在对角线AC上时(如图1所示),求AE+AF的值;
【类比探究】
(2)在上面的问题中,如果把点P沿DA方向移动,使PD=1,其余条件不变(如图2),你能发现AE+AF的值是多少?请直接写出你的结论;
【拓展迁移】
(3)在原问题中,当点P在线段DA的延长线上,点E在CA的延长线上时(如图3),设AP=m,则线段AE、AF的长与m有怎样的数量关系?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.阅读下面材料:
小明遇到这样一个问题:如图1,在△ABC中,D为BC中点,E、F分别为AB、AC上一点,且ED⊥DF,求证:BE+CF>EF.
小明发现,延长FD到点H,使DH=FD,连结BH、EH,构造△BDH和△EFH,通过证明△BDH与△CDF全等、△EFH为等腰三角形,利用△BEH使问题得以解决(如图2).
参考小明思考问题的方法,解决问题:
如图3,在矩形ABCD中,O为对角线AC中点,将矩形ABCD翻折,使点B恰好与点O重合,EF为折痕,猜想EF、AE、FC之间的数量关系?并证明你的猜想.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.在△ABC中,BC=8,高AH为4,△DEF在△ABC内,三个顶点D、E、F分别在BC、AB和AC上,且点D与点A在直线EF的异侧,我们称△DEF为△ABC的内接三角形.
(1)如图1,当△DEF∽△ABC,且EF=3时,求△DEF的面积;
(2)如图2,在△ABC的内接△DEF中,DE=DF,∠EDF=90°,且EF∥BC,EF与AH交于G点,求△DEF的面积;
(3)如图3,在△ABC的内接三角形DEF中,DE=DF,且EF∥BC,EF与AH交于G点,求等腰△DEF面积的最大值.

查看答案和解析>>

同步练习册答案