分析 先利用旋转的性质得∠CAC′=40°,BC=BC′,∠ACB=∠A′C′B,由于A′C′∥BC,则利用平行线的性质得∠A′C′B=∠CAC′=40°,所以∠ACB=40°,接着利用等腰三角形的性质和三角形内角和定理可计算出∠BCC′=70°,然后计算BCC′-∠ACB即可.
解答 解:∵△ABC绕点B逆时针旋转40°,
∴∠CAC′=40°,BC=BC′,∠ACB=∠A′C′B,
∵A′C′∥BC,
∴∠A′C′B=∠CAC′=40°,
∴∠ACB=40°,
∵BC=BC′,
∴∠BCC′=∠BC′C,
∴∠BCC′=$\frac{1}{2}$(180°-40°)=70°,
∴∠ACC′=∠BCC′-∠ACB=70°-40°=30°.
故答案为30.
点评 本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 在△ABC和△A′B′C′中,∠B=∠B′=90°,∠A=30°,∠C′=60°,则△ABC和△A′B′C′不相似 | |
| B. | △ABC和在△A′B′C′中,AB=5,BC=7,AC=8,A′C′=16,B′C′=14,A′B′=10,则△ABC∽△A′B′C′ | |
| C. | 两个全等三角形不一定相似 | |
| D. | 所有的菱形都相似 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 1 | B. | 2 | C. | 3 | D. | 5 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com