【题目】某药厂销售部门根据市场调研结果,对该厂生产的一种新型原料药未来两年的销售进行预测,并建立如下模型:设第t个月该原料药的月销售量为P(单位:吨),P与t之间存在如图所示的函数关系,其图象是函数p=(0<t≤8)的图象与线段AB的组合;设第t个月销售该原料药每吨的毛利润为Q(单位:万元),Q与t之间满足如下关系:
Q=
(1)当8<t≤24时,求P关于t的函数解析式;
(2)设第t个月销售该原料药的月毛利润为W(单位:万元).
①求W关于t的函数解析式;
②第几个月销售该原料药的月毛利润最大?对应的月销售量是多少?
【答案】(1)p=t+2;(2)①见解析;②第21个月, 529元.
【解析】
(1)设8<t≤24时,p=kt+b,把A,B点代入即可解答.
(2)①根据题意分情况进行讨论当0<t≤8时,w=240;当8<t≤12时,w=2t2+12t+16;当12<t≤24时,w=﹣t2+42t+88;②分情况讨论:当8<t≤12时,w=2(t+3)2﹣2;t=12时,取最大值,W=448;当12<t≤24时,w=﹣(t﹣21)2+529,当t=21时取得最大值529;
解:
(1)设8<t≤24时,p=kt+b
将A(8,10)、B(24,26)代入,得
,解得
∴当8<t≤24时,P关于t的函数解析式为:p=t+2
(2)①当0<t≤8时,w=(2t+8)×=240
当8<t≤12时,w=(2t+8)(t+2)=2t2+12t+16
当12<t≤24时,w=(﹣t+44)(t+2)=﹣t2+42t+88
综上所述,W关于t的函数解析式为:
②当8<t≤12时,w=2t2+12t+16=2(t+3)2﹣2
∵8<t≤12时,W随t的增大而增大
∴t=12时,取最大值,W=2(12+3)2﹣2=448,
当12<t≤24时,w=﹣t2+42t+88=﹣(t﹣21)2+529
∵12<t≤24时,当t=21时取得最大值,此时的最大值为529
∴第21个月销售该原料药的月毛利润最大,对应的月销售量是529元.
科目:初中数学 来源: 题型:
【题目】如图(1),已知点G在正方形ABCD的对角线AC上,GE⊥BC,垂足为点E,GF⊥CD,垂足为点F.
(1)证明与推断:
①求证:四边形CEGF是正方形;
②推断:的值为 :
(2)探究与证明:
将正方形CEGF绕点C顺时针方向旋转α角(0°<α<45°),如图(2)所示,试探究线段AG与BE之间的数量关系,并说明理由:
(3)拓展与运用:
正方形CEGF在旋转过程中,当B,E,F三点在一条直线上时,如图(3)所示,延长CG交AD于点H.若AG=6,GH=2,则BC= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,数学小组发现米高旗杆的影子落在了包含一圆弧型小桥在内的路上,于是他们开展了测算小桥所在圆的半径的活动.小刚身高米,测得其影长为米,同时测得的长为米,的长为米,测得小桥拱高(弧的中点到弦的距离,即的长)为米,则小桥所在圆的半径为( )
A. B. 5 C. D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠A=90°,AB=6,AC=8,D、E分别是边AB、AC的中点,点P从点D出发沿DE方向运动,过点P作PQ⊥BC于Q,过点Q 作QR∥BA交AC于R,当点Q与点C重合时,点P停止运动.设BQ=x,QR=y.
(1)求点D到BC的距离;
(2)求y关于x的函数关系式(不要求写出自变量的取值范围);
(3)是否存在点P,使△PQR是以PQ为一腰的等腰三角形?若存在,请求出所有满足要求的x的值;若不存在,请说明理由
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AB∥DC,AB=AD,对角线AC,BD交于点O,AC平分∠BAD.
(1)求证:四边形ABCD是菱形;
(2)过点C作CE⊥AB交AB的延长线于点E,连接OE,请你先补全图形,再求出当AB=,BD=2时,OE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=24,AC=18,D是AC上一点,AD=6,在AB上取一点E,使A、D、E三点组成的三角形与△ABC相似,则AE的长为( )
A.8B.C.8或D.8或9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】图1是一台实物投影仪,图2是它的示意图,折线表示固定支架,垂直水平桌面于点,点为旋转点,可转动,当绕点顺时针旋转时,投影探头始终垂直于水平桌面,经测量:,,,.(结果精确到0.1)
(1)如图2,,.
①填空:_________°;
②求投影探头的端点到桌面的距离.
(2)如图3,将(1)中的向下旋转,当投影探头的端点到桌面的距离为时,求的大小.(参考数据:,,,)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com