【题目】在某市城区地图(比例尺1∶9000)上,新安大街的图上长度与光华大街的图上长度分别是16 cm,10 cm.
(1)新安大街与光华大街的实际长度各是多少米?
(2)新安大街与光华大街的图上长度之比是多少?它们的实际长度之比呢?你发现了什么?
科目:初中数学 来源: 题型:
【题目】某校为美化校园,计划对面积为1800m2的区域进行绿化,安排甲、乙两个工程队完成.已知甲队每天能完成绿化的面积是乙队每天能完成绿化的面积的2倍,并且在独立完成面积为400 m2区域的绿化时,甲队比乙队少用4天.
(1)求甲、乙两工程队每天能完成绿化的面积分别是多少m2?
(2)若学校每天需付给甲队的绿化费用是0.4万元,乙队为0.25万元,要使这次的绿化总费用不超过8万元,至少应安排甲队工作多少天?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小王周末骑电动车从家里出发去商场买东西,当他骑了一段路时,想起要买一本书,于是原路返回到刚经过的新华书店,买到书后继续前往商场,如图是他离家的距离(米)与时间(分钟)之间的关系示意图,请根据图中提供的信息回答下列问题:
(1)在此变化过程中,自变量是 ,因变量是 .
(2)小王在新华书店停留了多长时间?
(3)买到书后,小王从新华书店到商场的骑车速度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】问题情境:如图1,AB∥CD,∠PAB=130°,∠PCD=120°,求∠APC的度数.
小明的思路是:过P作PE∥AB,通过平行线性质来求∠APC.
(1)按小明的思路,易求得∠APC的度数为_____度;
(2)问题迁移:如图2,AB∥CD,点P在射线OM上运动,记∠PAB=α,∠PCD=β,当点P在B、D两点之间运动时,问∠APC与α、β之间有何数量关系?请说明理由;
(3)在(2)的条件下,如果点P在B、D两点外侧运动时(点P与点O、B、D三点不重合),请直接写出∠APC与α、β之间的数量关系.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】填写推理理由:
已知:如图,D,F,E分别是BC,AC,AB上的点,DF∥AB,DE∥AC,试说明∠EDF=∠A.
解:∵DF∥AB ( ),
∴∠A+∠AFD=180° ( ).
∵DE∥AC ( ),
∴∠AFD+∠EDF=180° ( ).
∴∠A=∠EDF ( ).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:如图,在△中,把绕点按顺时针方向旋转得到,把绕点按逆时针方向旋转得到,连接,当时,我们称△是△的“旋补三角形”,△边上的中线叫做的“旋补中线”,点叫做“旋补中心”.
⑴ 特例感知:在如图、如图中,是的“旋补三角形”,是的“旋补中线”.
① 如图,当为等边三角形时,与的数量关系为= ;
② 如图,当,时,则长为 .
⑵ 精确作图:如图,已知在四边形内部存在点,使得是的“旋补三角形”(点D的对应点为点A,点C的对应点为点B),请用直尺和圆规作出点(要求:保留作图痕迹,不写作法和证明)
⑶ 猜想论证:在如图中,当△为任意三角形时,猜想与的数量关系,并给予证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】对于平面直角坐标系xOy中的点,若点的坐标为(其中k为常数,且),则称点为点P的“k属派生点”.
例如:的“4属派生点”为,即.
(1)点的“2属派生点”的坐标为________;
(2)若点P的“3属派生点”的坐标为,求点P的坐标;
(3)若点P在y轴的正半轴上,点P的“k属派生点”为点,且点到y轴的距离不小于线段OP长度的5倍,则k的取值范围是________________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com