精英家教网 > 初中数学 > 题目详情

【题目】在函数学习中,我们经历了确定函数表达式﹣﹣利用函数图象研究其性质﹣﹣运用函数解决问题的学习过程.在画函数图象时,我们通过描点或平移的方法画出了所学的函数图象.同时我们也学习了绝对值的意义,结合上面经历的学习过程,现在来解决下面的问题:在函数y|kx1|+b中,当x2时,y=﹣3x0时,y=﹣2

1)求这个函数的表达式;

2)用列表描点的方法画出该函数的图象;请你先把下面的表格补充完整,然后在下图所给的坐标系中画出该函数的图象;

x

6

4

2

0

2

4

6

y

   

0

1

2

3

2

   

3)观察这个函数图象,并写出该函数的一条性质;

4)已知函数y x0)的图象如图所示,与y|kx1|+b的图象两交点的坐标分别是(2+42),(22,﹣1),结合你画的函数图象,直接写出|kx1|+b的解集.

【答案】(1)y=||-3;(2)1,-1;(3)当x2时,yx增大而增大;或当x2时,yx减小而减小;(422≤x+4

【解析】

1)由题意利用待定系数法构建方程组即可解决问题.

2)由题意利用描点法即可解决问题.

3)由题意观察图象,写出函数的性质即可.

4)由题意求出点EF的坐标即可解决问题.

解:(1)把x0y=﹣2x2y=﹣3代入y|kx1|+b中,得

2|1|+b,﹣3|2k1|3

∴b=﹣3∴k

∴y=||-3

2∵x=﹣6时,y1

x6时,y=﹣1

故答案为1,﹣1

函数图象如图所示:

3)当x2时,yx增大而增大;或当x2时,yx减小而减小.

4)由解得

∴E(﹣2+2,﹣1),

同法可得F2+4,﹣2+

观察图象可知不等式|kx1|+b≤的解集为:22≤x≤+4

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】已知:如图,在中,,点D、E分别是AB、AC的中点,点FBC延长线上,连接EF,且

如图1,求证:四边形CDEF是平行四边形;

如图2,连接AF、BE,在不添加任何辅助线的情况下,请直接写出图2中所有与面积相等的三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】问题:如图①,在等边三角形ABC内有一点P,且PA2PB=PC1,求∠BPC的度数和等边三角形ABC的边长.

李明同学的思路是:将△BPC绕点B逆时针旋转60°,画出旋转后的图形(如图②),连接PP′,可得△PPB是等边三角形,而△PPA又是直角三角形(由勾股定理的逆定理可证),可得∠APB °,所以∠BPC=∠APB °,还可证得△ABP是直角三角形,进而求出等边三角形ABC的边长为 ,问题得到解决.

1)根据李明同学的思路填空:∠APB °,∠BPC=∠APB °,等边三角形ABC的边长为

2)探究并解决下列问题:如图③,在正方形ABCD内有一点P,且PAPBPC1.求∠BPC的度数和正方形ABCD的边长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】若函数yaxh2+ka0)的图象经过原点,最大值为16,且形状与抛物线y4x2+2x3相同,则此函数的关系式为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,二次函数y=﹣x2+2x+3的图象交x轴于点AB(点A在点B的左侧).若把点B向上平移mm0)个单位长度得点B1,若点B1向左平移nn0)个单位长度,将与该二次函数图象上的点B2重合;若点B1向左平移(n+2)个单位长度,将与该二次函数图象上的点B3重合.则n的值为(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,⊙O的直径AB长为10,弦AC长为6,∠ACB的平分线交⊙OD

1)求BC的长;

2)连接ADBD,判断△ABD的形状,说明理由.

3)求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC中,ADBCDBEACEMAB边的中点,连结MEMDED,设AB=10,∠DBE=30°,则EDM的面积为____________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,抛物线y=﹣x2+bx+cx轴交于A(﹣10)、B两点,与y轴交于点C 03),点P在该抛物线的对称轴上,且纵坐标为2

1)求抛物线的表达式以及点P的坐标;

2)当三角形中一个内角α是另一个内角β的两倍时,我们称α为此三角形的“特征角”.

D在射线AP上,如果∠DAB为△ABD的特征角,求点D的坐标;

E为第一象限内抛物线上一点,点Fx轴上,CEEF,如果∠CEF为△ECF的特征角,求点E的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与实践

背景阅读:旋转就是将图形上的每一点在平面内绕着旋转中心旋转固定角度的位置移动,其中是过程,是结果.旋转作为图形变换的一种,具备图形旋转前后对应点到旋转中心的距离相等:对应点与旋转中心所连线段的夹角等于旋转角:旋转前、后的图形是全等图形等性质.所以充分运用这些性质是在解决有关旋转问题的关健.

实践操作:如图1,在RtABC中,∠B90°BC2AB12,点DE分别是边BCAC的中点,连接DE,将△EDC绕点C按顺时针方向旋转,记旋转角为α

问题解决:(1)①当α时,   ;②当α180°时,   

2)试判断:当0°≤a360°时,的大小有无变化?请仅就图2的情形给出证明.

问题再探:(3)当△EDC旋转至ADE三点共线时,求得线段BD的长为   

查看答案和解析>>

同步练习册答案