精英家教网 > 初中数学 > 题目详情

【题目】学校准备购进一批节能灯,已知1A型节能灯和3B型节能灯共需26元;3A型节能灯和2B型节能灯共需29元。

1)求1A型节能灯和1B型节能灯的售价各是多少元?

2)学校准备购进这两种型号的节能灯共80只,并且A型节能灯的数量不多于B型节能灯的3倍,问如何购买最省钱,说明理由。

【答案】11A型节能灯的售价为5元,1B型节能灯的售价为7元;(2)购买60A型节能灯,20B型节能灯最省钱,理由见解析

【解析】

1)设一只A型节能灯的售价是x元,一只B型节能灯的售价y元,根据题意列出方程组,求出方程组的解即可;

2)设A型节能灯买了a只,则B型节能灯买了(80-a)只,共花费w元,根据题意列出不等式组,求出不等式组的解集即可.

解(1)设1A型节能灯的售价为x元,1B型节能灯的售价为y

由题意得:

解得:

答:1A型节能灯的售价为5元,1B型节能灯的售价为7

2)设购买A型节能灯a个,则购买B型节能灯(80-a)个,总费用为w

由题意得:a≤380-a

解得a≤60

又∵w=5a+780-a=-2a+560

wa的增大而减小

∴当a取最大值60时,w有最小值

w=-2×60+560=440

即购买60A型节能灯,20B型节能灯最省钱

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AD=4,点E在边AD上,连接CE,以CE为边向右上方作正方形CEFG,作FHAD,垂足为H,连接AF

(1)求证:FH=ED

(2)AE为何值时,△AEF的面积最大?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小丽准备测一根旗杆AB的高度,已知小丽的眼睛离地面的距离EC=1.5米,第一次测量点C和第二次测量点D之间的距离CD=10米,∠AEG=30°AFG=60°,请你帮小丽计算出这根旗杆的高度.(结果保留根号)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】贵成高铁开通后极大地方便了人们的出行,甲、乙两个城市相距450千米,加开高铁列车后,高铁列车行驶时间比原特快列车行驶时间缩短了3小时,已知高铁列车平均行驶速度是原特快列车平均行驶速度的3倍,求高铁列车的平均行驶速度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(探索新知)

如图1,点在线段上,图中共有3条线段:,若其中有一条线段的长度是另一条线段长度的两倍,则称点是线段的“二倍点”.

1)①一条线段的中点 这条线段的“二倍点”;(填“是”或“不是”)

②若线段是线段的“二倍点”,则 (写出所有结果)

(深入研究)

如图2,若线段,点从点的位置开始,以每秒2的速度向点运动,当点到达点时停止运动,运动的时间为.

2)问为何值时,点是线段的“二倍点”;

3)同时点从点的位置开始,以每秒1的速度向点运动,并与点同时停止.请直接写出点是线段的“二倍点”时的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在△ABC中,DE分别是BCAC中点,BF平分∠ABC.交DE于点FAB8BC6,则EF的长为(  )

A. 1B. 2C. 3D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:(113+(-18)-(611

2÷

3)-14×[2(3)2]

4a2b[4a(c3b)]

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某旅行社推出一条成本价位500/人的省内旅游线路,游客人数y(人/月)与旅游报价x(元/人)之间的关系为y=﹣x+1300,已知:旅游主管部门规定该旅游线路报价在800/人~1200/人之间.

(1)要将该旅游线路每月游客人数控制在200人以内,求该旅游线路报价的取值范围;

(2)求经营这条旅游线路每月所需要的最低成本;

(3)档这条旅游线路的旅游报价为多少时,可获得最大利润?最大利润是多少?

【答案】(1)取值范围为1100元/人~1200元/人之间;(2)50000;(3)x=900时,w最大=160000

【解析】试题分析:(1)根据题意列不等式求解可;

(2)根据报价减去成本可得到函数的解析式,根据一次函数的图像求解即可;

(3)根据利润等于人次乘以价格即可得到函数的解析式,然后根据二次函数的最值求解即可.

试题解析(1)∵由题意得时,即

∴解得

即要将该旅游线路每月游客人数控制在200人以内,该旅游线路报价的取值范围为1100元/人~1200元/人之间;

(2),∴

,∴当时,z最低,即

(3)利润

时,.

型】解答
束】
23

【题目】已知四边形ABCD中,AB=AD,对角线AC平分∠DAB,过点CCEAB于点E,点FAB上一点,且EF=EB,连接DF

1)求证:CD=CF

2)连接DF,交AC于点G,求证:DGCADC

3)若点H为线段DG上一点,连接AH,若∠ADC=2HAGAD=3DC=2,求的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠ABC的平分线与CD的延长线交于点E,与AD交于点F,且点F恰好为边AD的中点.

1)求证:ABF≌△DEF

2)若AGBEGBC4AG1,求BE的长.

查看答案和解析>>

同步练习册答案