【题目】如图,已知,的边上有一动点,从距离点的点处出发,沿线段、射线运动,速度为;动点从点出发,沿射线运动,速度为;、同时出发,同时射线绕着点从上以每秒5°的速度顺时针旋转,设运动时间是.
(1)当点在上运动时, (用含的代数式表示);
(2)当点在线段上运动时,为何值时,?此时射线是的角平分线吗?如果是请说明理由.
(3)在射线上是否存在、相距?若存在,请求出t的值并求出此时的度数;若不存在,请说明理由.
【答案】(1)(18-2t);(2)6,是,理由见详解;(3)存在,t=16,∠BOC=20°或t=20,∠BOC=40°.
【解析】
(1)由题意先确定出PM=2t,从而分析即可得出结论;
(2)由题意先根据OP=OQ建立方程求出t=6,进而求出∠AOC=30°,即可得出结论;
(3)根据题意分P、Q相遇前相距2cm和相遇后2cm两种情况,建立方程求解,即可得出结论.
解:(1)当点P在MO上运动时,由运动知,PM=2t,
∵OM=18cm,
∴PO=OM-PM=(18-2t)cm,
故答案为:(18-2t);
(2)由(1)知,OP=18-2t,
当OP=OQ时,则有18-2t=t,
∴t=6
即t=6时,能使OP=OQ,
∵射线OC绕着点O从OA上以每秒5°的速度顺时针旋转,
∴∠AOC=5°×6=30°,
∵∠AOB=60°,
∴∠BOC=∠AOB-∠AOC=30°=∠AOC,
∴射线OC是∠AOB的角平分线,
(3)分为两种情形.
当P、Q相遇前相距2cm时,
OQ-OP=2
∴t-(2t-18)=2
解这个方程,得t=16,
∴∠AOC=5°×16=80°
∴∠BOC=80°-60°=20°,
当P、Q相遇后相距2cm时,OP-OQ=2
∴(2t-18)-t=2
解方程得t=20,
∴∠AOC=5°×20=100°
∴∠BOC=100°-60°=40°,
综合上述t=16,∠BOC=20°或t=20,∠BOC=40°.
科目:初中数学 来源: 题型:
【题目】如图,数轴上点所对应的数分别为,且都不为0,点是线段的中点,若,则原点的位置( )
A.在线段上B.在线段的延长线上
C.在线段上D.在线段的延长线上
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】社区利用一块矩形空地建了一个小型的惠民停车场,其布局如图所示.已知停车场的长为52米,宽为28米,阴影部分设计为停车位,要铺花砖,其余部分是等宽的通道.已知铺花砖的面积为640平方米.
(1)求通道的宽是多少米?
(2)该停车场共有车位64个,据调查分析,当每个车位的月租金为200元时,可全部租出;当每个车位的月租金每上涨10元,就会少租出1个车位.当每个车位的月租金上涨多少元时,停车场的月租金收入为14400元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义一种对正整数n的“C运算”:①当n为奇数时,结果为3n+1;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如,n=66时,其“C运算”如下
若n=26,则第2019次“C运算”的结果是
A. 40 B. 5 C. 4 D. 1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在菱形中,,点为边的中点,点与点关于对称,连接、、,下列结论:①;②;③;④,其中正确的是( )
A. ①②B. ①②③C. ①②④D. ①②③④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用1块A型钢板可制成2个C型模具和1个D型模具;用1块B型钢板可制成1个C型模具和3个D型模具,现准备A、B型钢板共100块,并全部加工成C、D型模具.
(1)若B型钢板的数量是A型钢板的数量的两倍还多10块,求A、B型钢板各有多少块?
(2)若销售C、D型模具的利润分别为80元/块、100元/块,且全部售出.
①当A型钢板数量为25块时,那么共可制成C型模具 个,D型模具 个;
②当C、D型模具全部售出所得的利润为34400元,求A型钢板有多少块?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】规律发现:
在数轴上
(1)点M表示的数是2,点N表示的数是8,则线段MN的中点P表示的数为______;
(2)点M表示的数是﹣3,点N表示的数是7,则线段MN的中点P表示的数为_____;发现:点M表示的数是a,点N表示的数是b,则线段MN的中点P表示的数为______.
直接运用:
将数轴按如图1所示,从点A开始折出一个等边三角形A'B'C,设点A表示的数为x﹣3,点B表示的数为2x+1,C表示的数为x﹣1,则x值为_____,若将△A'B'C从图中位置向右滚动,则数2018对应的点将与△A'B'C的顶点_______重合.
类比迁移:
如图2:OA⊥OC,OB⊥OD,∠COD=60°,若射线OA绕O点以每秒15°的速度顺时针旋转,射线OB绕O点以每秒10°的速度顺时针旋转,射线OC绕O点以每秒5°的速度逆时针旋转,三线同时旋转,当一条射线与射线OD重合时,三条射线同时停止运动.
①求射线OC和射线OB相遇时,∠AOB的度数;
②运动几秒时,射线OA是∠BOC的平分线?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB 是⊙O 的直径,P 为 AB 延长线上的一点,PC 切⊙O 于点 C,AD⊥PC, 垂足为 D,弦 CE 平分∠ACB,交 AB 于点 F,连接 AE.
(1)求证:PC=PF;
(2)若 tan∠ABC=,AE=5,求线段 PC 的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com