分析 (1)由DA⊥BA,CA⊥EA,且AD=AB,AE=AC,利用SAS可判定△DAC≌△BAE,继而可证得BE=DC;
(2)由△DAC≌△BAE,可得∠ACD=∠AEB,继而可证得BE⊥DC.
解答 证明:(1)∵DA⊥BA,CA⊥EA,
∴∠DAB=∠CAE=90°,
∴∠DAC=∠BAE,
在△DAC和△BAE中,
$\left\{\begin{array}{l}{AD=AB}\\{∠DAC=∠BAE}\\{AC=AE}\end{array}\right.$,
∴△DAC≌△BAE(SAS),
∴BE=CD;
(2)∵△DAC≌△BAE,
∴∠ACD=∠AEB,
∵∠AEB+∠BEC+∠ACE=90°,
∴∠ACD+∠ACE+∠BEC=90°,
∴∠CQE=90°,
即BE⊥DC.
点评 此题考查了全等三角形的判定与性质以及等腰直角三角形性质.此题难度适中,注意掌握数形结合思想的应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{12}{5}$ | B. | $\frac{24}{5}$ | C. | 5 | D. | 6 |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | B. | C. | D. |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com