分析 如图,首先证明△OBO′为为等边三角形,得到OO′=OB=4,故选项②正确;证明△ABO′≌△CBO,得到选项①正确;运用勾股定理逆定理证明△AOO′为直角三角形,求出∠AOB的度数,得到选项③正确;运用面积公式求出四边形AOBO′的面积,可判断选项④正确.
解答
解:如图,连接OO′;
∵△ABC为等边三角形,
∴∠ABC=60°,AB=CB;
由题意得:∠OBO′=60°,OB=O′B,
∴△OBO′为等边三角形,∠ABO′=∠CBO,
∴OO′=OB=4;∠BOO′=60°,
∴选项②正确;
在△ABO′与△CBO中,
$\left\{\begin{array}{l}{AB=BC}\\{∠ABO′=∠CBO}\\{BO′=BO}\end{array}\right.$,
∴△ABO′≌△CBO(SAS),
∴AO′=OC=5,
△BO′A可以由△BOC绕点B逆时针方向旋转60°得到,
∴选项①正确;
在△AOO′中,∵32+42=52,
∴△AOO′为直角三角形,
∴∠AOO′=90°,∠AOB=90°+60°=150°,
∴选项③正确;
∵${S}_{四边形AOBO′}=\frac{1}{2}×{4}^{2}×sin60°$+$\frac{1}{2}×3×4$=$4\sqrt{3}+6$,
∴选项④正确.
综上所述,正确选项为①②③④.
故答案为:①②③④.
点评 该题主要考查了旋转变换的性质、全等三角形的判定及其性质、勾股定理逆定理等几何知识点及其应用问题;应牢固掌握旋转变换的性质、全等三角形的判定及其性质、勾股定理逆定理等几何知识点,这是灵活解题的基础.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | y1>y2>0 | B. | y1<y2<0 | C. | y2>y1>0 | D. | y2<y1<0 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com