¹Û²ìÏÂÁеÈʽ£º
1
1¡Á2
=1-
1
2
£¬
1
2¡Á3
=
1
2
-
1
3
£¬
1
3¡Á4
=
1
3
-
1
4
£¬½«ÒÔÉÏÈý¸öµÈʽÁ½±ß·Ö±ðÏà¼ÓµÃ£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
=1-
1
2
+
1
2
-
1
3
+
1
3
-
1
4
=1-
1
4
=
3
4
£®
£¨1£©²ÂÏ벢д³ö£º
1
n(n+1)
=
 
£®
£¨2£©Ö±½Óд³öÏÂÁи÷ʽµÄ¼ÆËã½á¹û£º
1
1¡Á2
+
1
2¡Á3
+
1
3¡Á4
+¡­+
1
2006¡Á2007
=
 
£»
£¨3£©Ì½¾¿²¢¼ÆË㣺
1
2¡Á4
+
1
4¡Á6
+
1
6¡Á8
+¡­+
1
2006¡Á2008
£®
¿¼µã£ºÓÐÀíÊýµÄ»ìºÏÔËËã
רÌ⣺¹æÂÉÐÍ
·ÖÎö£º£¨1£©¹éÄÉ×ܽáµÃµ½Ò»°ãÐÔ½á¹û¼´¿É£»
£¨2£©ÀûÓõóöµÄ¹æÂɱäÐΣ¬¼ÆËã¼´¿ÉµÃµ½½á¹û£»
£¨3£©ÀûÓòðÏî·¨Ôò±äÐΣ¬¼ÆËã¼´¿ÉµÃµ½½á¹û£®
½â´ð£º½â£º£¨1£©
1
n(n+1)
=
1
n
-
1
n+1
£»
£¨2£©Ô­Ê½=1-
1
2
+
1
2
-
1
3
+¡­+
1
2006
-
1
2007
=1-
1
2007
=
2006
2007
£»
£¨3£©Ô­Ê½=
1
2
£¨
1
2
-
1
4
+
1
4
-
1
6
+¡­+
1
2006
-
1
2008
£©=
1
2
£¨
1
2
-
1
2008
£©=
1003
4016
£®
¹Ê´ð°¸Îª£º£¨1£©
1
n
-
1
n+1
£»£¨2£©
2006
2007
£®
µãÆÀ£º´ËÌ⿼²éÁËÓÐÀíÊýµÄ»ìºÏÔËË㣬ÊìÁ·ÕÆÎÕÔËËã·¨ÔòÊǽⱾÌâµÄ¹Ø¼ü£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

Èçͼ£¬Õý·½ÐÎABCD±ß³¤Îª4cm£¬ÒÔÕý·½ÐεÄÒ»±ßBCΪֱ¾¶ÔÚÕý·½ÐÎABCDÄÚ×÷°ëÔ²£¬ÔÙ¹ýA×÷°ëÔ²µÄÇÐÏߣ¬Óë°ëÔ²ÏàÇÐÓÚFµã£¬ÓëDCÏཻÓÚEµã£¬Ôò¡÷ADEµÄÃæ»ýΪ
 
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

£¨1£©5
3
4
+(-
1
3
)
+3
1
4
+
2
3

£¨2£©£¨-10£©+35-£¨ 55-|-20|£©
£¨3£©-
3
4
¡Á(-
8
3
)¡Â0.25

£¨4£©£¨-4£©¡Á£¨-5£©-56¡Â£¨-14£©
£¨5£©(
3
8
+
1
2
-
5
6
)¡Á(-24)

£¨6£©(-48
8
9
)¡Â(-8)

£¨7£©3¡Á£¨-2£©2-4¡Á32+6
£¨8£©-12+8¡Á(
1
2
)3+(-6)¡Â(-
1
3
)2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½â·½³Ì£º
£¨1£©x2=4                     
£¨2£©£¨x-1£©2-1=0
£¨3£©x2-4x-1=0  
£¨4£©£¨x-5£©2=5-x
£¨5£©£¨2x-3£©2-x2=0
£¨6£©3x2+5x+1=0
£¨7£©4x2-5x+3=0              
£¨8£©2x2+4x-1=0
£¨9£©x£¨x-1£©=2-2x£®                 
£¨10£©2x2-3=5x£®
£¨11£©£¨x-1£©2-6£¨x-1£©+9=0     
£¨12£©£¨2x-1£©£¨x+3£©=4£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¼ÆË㣺
£¨1£©-8-£¨-17£©
£¨2£©24¡Â£¨-2£©+4
£¨3£©100¡Â
1
8
¡Á£¨-8£©
£¨4£©£¨
1
4
-
5
6
+
1
3
£©¡Á£¨-12£©
£¨5£©(-
2
3
)
4
               
£¨6£©-22¡Á(-
1
2
)2
£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

¹æ¶¨Ò»ÖÖÔËË㣺
.
ab
cd
.
=ad-bc
£¬ÀýÈç
.
23
45
.
=2¡Á5-3¡Á4=-2£¬ÇëÄã°´ÕÕÕâÖÖÔËËãµÄ¹æ¶¨£¬¼ÆËã
.
1-3
20.5
.
ºÍ
.
(-1)20104
1.25-9
.
µÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

½«ÏÂÁг¤¶ÈµÄÈý¸ùľ°ôÊ×λ˳´ÎÁ¬½Ó£¬ÄÜ×é³ÉÈý½ÇÐεÄÊÇ£¨¡¡¡¡£©
A¡¢4£¬5£¬10
B¡¢3£¬4£¬5
C¡¢1£¬3£¬4
D¡¢1£¬2£¬3

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

»¯¼òÓë¼ÆË㣺
£¨1£©
x2-4x+4
+
9+6x+x2
£¨-3£¼x£¼2£©
£¨2£©
2
£¨
2
+1£©+£¨
1
2
£©-2-£¨
2
-5£©0+£¨
1
2
-1
£©-1£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º³õÖÐÊýѧ À´Ô´£º ÌâÐÍ£º

ËıßÐÎABCDΪÕý·½ÐΣ¨ËıßÏàµÈ£¬ËĽÇΪֱ½Ç£©£¬µãPΪֱÏßDCÉÏÒ»µã£¬Á¬½ÓAP×÷µÈÑüRt¡÷APQ£¬AP¡ÍAQ£¨ÆäÖÐA¡¢P¡¢Q°´ÄæÊ±ÕëÅÅÁУ©£¬Ö±ÏßCQ½»Ö±ÏßADÓÚMµã£®
£¨1£©Èçͼ¢Ù£¬µãPÔÚDC±ßÉÏʱ£¬Ïß¶ÎDMºÍCPÖ®¼äÊÇ·ñ´æÔÚijÖÖÈ·¶¨µÄÊýÁ¿¹ØÏµ£¿Ð´³öÄãµÄ½áÂÛ²¢Ö¤Ã÷£»
£¨2£©Èçͼ¢Ú£¬µãPÔÚDCµÄÑÓ³¤ÏßÉÏʱ£¬ÆäËûÌõ¼þ²»±ä£¬£¨1£©ÖеĽáÂÛÊÇ·ñÈÔÈ»³ÉÁ¢£ºÖ¤Ã÷ÄãµÄ½áÂÛ£»
£¨3£©Èçͼ¢Û£¬µãPÔÚCDµÄÑÓ³¤ÏßÉÏʱ£¬ÆäËûÌõ¼þ²»±ä£¬£¨1£©ÖеĽáÂÛÊÇ·ñÈÔÈ»³ÉÁ¢£¿ÇëÄãÍê³Éͼ¢Û£¬²¢Ö±½Óд³öÄãµÄ½áÂÛ£¬²»ÐèÒªÖ¤Ã÷£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸