精英家教网 > 初中数学 > 题目详情

【题目】如图,在RtABC中,∠ACB90°,点D是边BC的中点,联结AD.过点CCEAD于点E,联结BE

1)求证:BD2DEAD

2)如果∠ABC=∠DCE,求证:BDCEBEDE

【答案】(1)证明见解析;(2)证明见解析.

【解析】

1)证明△CDE∽△ADC推出,可得CD2DEDA即可解决问题.

2)利用相似三角形的性质首先证明ACBE,再证明△ACE∽△CDE,可得,可得即可解决问题.

解:

1)证明:如图1中,

CEAD

∴∠CED=∠ACD90

∵∠CDE=∠ADC

∴△CDE∽△ADC

CD2DEDA

DBCD

∴∴BD2DEDA

2)解:如图2中,

BD2DEDA

∵∠CDE=∠ADB

∴△BDE∽△ADB

∴∠DEB=∠ABC

∵∠ABD=∠ECD

∴∠BED=∠BCE

∵∠EBD=∠CBE

∴△EBD∽△CBE

BE2BDBC

CDBD

BE22CD2

∵∠DCE+ACE90,∠CAD+ACE90

∴∠CAD=∠ECD=∠ABC

∵∠ACD=∠BCA

∴△ACD∽△BCA

AC2CDCB2CD2

ACBE

∵△ACE∽△CDE

BDCEBEDE

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在圆O中,弦ACBD相交于点M,且∠A=∠B

1)求证:ACBD

2)若OA4,∠A30°,当ACBD时,求弧CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,弦CDAB,垂足为点P,直线BFAD延长线交于点F,且∠AFB=∠ABC

1)求证:直线BF是⊙O的切线;

2)若CD2BP1,求⊙O的半径.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,坐标原点为OA点坐标为(40)B点坐标为(10),以AB的中点P为圆心,AB为直径作⊙Py轴的负半轴交于点C

1)求经过ABC三点的抛物线对应的函数表达式;

2)设M为(1)中抛物线的顶点,试说明直线MC与⊙P的位置关系,并证明你的结论;

3)在第二象限中是否存在的一点Q,使得以AOQ为顶点的三角形与OBC相似.若存在,请求出所有满足的Q点坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线x轴交于AB两点,与y轴交于点C,且OA=2OC=3

(1)求抛物线的解析式.

(2)若点D(22)是抛物线上一点,那么在抛物线的对称轴上,是否存在一点P,使得△BDP的周长最小,若存在,请求出点P的坐标,若不存在,请说明理由.

注:二次函数≠0)的对称轴是直线=.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在RtABC中,∠ACB90°,∠A30°,点OAB中点,点P为直线BC上的动点(不与BC重合),连接OCOP,将OP绕点P顺时针旋转60°,得到线段PQ,连接BQ,若∠BPO15°,BP4,则BQ的长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,抛物线yax2+bx+cx轴交于AB两点,A(﹣50),与y轴交于C0,﹣5),并且对称轴x=﹣3

1)求抛物线的解析式;

2Px轴上方的抛物线上,过P的直线yx+m与直线AC交于点M,与y轴交于点N,求PM+MN的最大值;

3)点D为抛物线对称轴上一点,

①当△ACD是以AC为直角边的直角三角形时,求D点坐标;

②若△ACD是锐角三角形,求点D的纵坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】综合与探究:

已知二次函数y=﹣x2+x+2的图象与x轴交于AB两点(点B在点A的左侧),与y轴交于点C

1)求点ABC的坐标;

2)求证:ABC为直角三角形;

3)如图,动点EF同时从点A出发,其中点E以每秒2个单位长度的速度沿AB边向终点B运动,点F以每秒个单位长度的速度沿射线AC方向运动.当点F停止运动时,点E随之停止运动.设运动时间为t秒,连结EF,将AEF沿EF翻折,使点A落在点D处,得到DEF.当点FAC上时,是否存在某一时刻t,使得DCO≌△BCO?(点D不与点B重合)若存在,求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,过原点的直线与反比例函数)的图象交于两点,点在第一象限.点轴正半轴上,连结交反比例函数图象于点的平分线,过点的垂线,垂足为,连结.若是线段中点,的面积为4,则的值为______

查看答案和解析>>

同步练习册答案