精英家教网 > 初中数学 > 题目详情
16.将一盛有不足半杯水的圆柱形玻璃水杯拧紧杯盖后放倒,水平放置在桌面上,水杯的底面如图所示,已知水杯的半径是4cm,水面宽度AB是4$\sqrt{3}$cm.
(1)求水的最大深度(即CD)是多少?
(2)求杯底有水部分的面积(阴影部分).

分析 (1)由垂径定理可得出BC的长,在Rt△OBC中,根据勾股定理求出OC的长,由DC=OD-OC即可得出结论.
(2)解直角三角形求得∠AOB的度数,然后求S△AOB和S扇形OAB,然后根据S阴影=S扇形-S△AOB即可求得.

解答 解:(1)∵OD⊥AB,AB=4$\sqrt{3}$cm,
∴BC=$\frac{1}{2}$AB=$\frac{1}{2}$×4$\sqrt{3}$=2$\sqrt{3}$cm,
在Rt△OBC中,
∵OB=4cm,BC=2$\sqrt{3}$cm,
∴OC=$\sqrt{O{B}^{2}-B{C}^{2}}$=$\sqrt{{4}^{2}-(2\sqrt{3})^{2}}$=2cm,
∴DC=OD-OC=4-2=2cm.
∴水的最大深度(即CD)是2cm.
(2)∵OC=2,OB=4,
∴OC=$\frac{1}{2}$OB,
∴∠ABO=30°,
∵OA=OB,
∴∠BAO=∠ABO=30°,
∴∠AOB=120°,
∵S△AOB=$\frac{1}{2}$AB•OC=$\frac{1}{2}$×4$\sqrt{3}$×2=4$\sqrt{3}$,
∴S扇形OAB=$\frac{120π×{4}^{2}}{360}$=$\frac{16}{3}$π,
∴S阴影=S扇形-S△AOB=$\frac{16}{3}$π-4$\sqrt{3}$(cm)2

点评 本题考查的是垂径定理的应用,解答此类问题的关键是构造出直角三角形,利用垂径定理及勾股定理进行解答.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:填空题

6.如图,是抛物线y=ax2+bx+c的一部分,其对称轴为直线x=1,它与x轴的一个交点为A(3,0),根据图象,可知关于x的一元二次方程ax2+bx+c=0的解是3或-1.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

7.计算:
(1)x2x6x+x5x3x              
(2)(a-b)2(a-b)n(b-a)5
(3)(a.a4.a52
(4)(-2a22.a4-(-5a42
(5)(0.25)100×4100
(6)${3^{14}}×{(-\frac{1}{9})^7}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

4.如图,已知抛物线y=ax2+bx+c经过A(-2,-2),B(3,3),C(0,6).
(1)求该抛物线的解析式.
(2)抛物线对称轴上是否存在点P,使△APC与△ABC的面积相等?若存在,求出点P的坐标;若不存在,说明理由.
(3)抛物线对称轴上是否存在点Q,使∠AQC=90°?若存在,求出Q点坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

11.计算:$2tan{60°}-|{\sqrt{3}-2}|-\sqrt{27}+{({\frac{1}{3}})^{-2}}$.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.勾股定理神秘而美妙,它的证法多样,其巧妙各有不同,其中的“面积法”给了小聪以灵感,他惊喜的发现;当两个全等的直角三角形如图1或图2摆放时,都可以用“面积法”来证明,下面是小聪利用图1证明勾股定理的过程:

将两个全等的直角三角形按图1所示摆放,其中∠DAB=90°,求证:a2+b2=c2
证明:连接DB,过点D作BC边上的高DF,
则DF=EC=b-a.
∵S四边形ADCB=S△ACD+S△ABC=$\frac{1}{2}$b2+$\frac{1}{2}$ab.
又∵S四边形ADCB=S△ADB+S△DCB=$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴$\frac{1}{2}$b2+$\frac{1}{2}$ab=$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴a2+b2=c2
请参照上述证法,利用图2完成下面的证明:
将两个全等的直角三角形按图2所示摆放,其中∠DAB=90°.
求证:a2+b2=c2
证明:连结BD,过点B作DE边上的高BF
∵S多边形ACBED=S△ACB+S△ABE+S△ADE=$\frac{1}{2}$ab+$\frac{1}{2}$b2+$\frac{1}{2}$ab
又∵S多边形ACBED=S△ACB+S△ABD+S△BDE=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴$\frac{1}{2}$ab+$\frac{1}{2}$b2+$\frac{1}{2}$ab=$\frac{1}{2}$ab+$\frac{1}{2}$c2+$\frac{1}{2}$a(b-a)
∴a2+b2=c2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.已知:如图,O为正方形ABCD的中心,BE平分∠DBC,交DC于点E,延长BC到点F,使CF=CE,连结DF,交BE的延长线于点G,连结OG.
(1)求证:△BCE≌△DCF:
(2)OG与BF有什么数量关系?证明你的结论;
(3)若GE•GB=4-2$\sqrt{2}$,求正方形ABCD的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.已知如图,△ABC中,AB<AC,D是BC中点,求证:∠CAD<∠BAD.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若∠1=2∠2,且∠1+∠2=90°,则∠1=60°,∠2=30°.

查看答案和解析>>

同步练习册答案