【题目】如图1,点、点在直线上,反比例函数()的图象经过点.
(1)求和的值;
(2)将线段向右平移个单位长度(),得到对应线段,连接、.
①如图2,当时,过作轴于点,交反比例函数图象于点,求的值;
②在线段运动过程中,连接,若是以为腰的等腰三形,求所有满足条件的的值.
【答案】(1),;(2)①;②是以为腰的等腰三形,满足条件的的值为4或5.
【解析】
(1)先将点坐标代入直线的解析式中,求出,进而求出点坐标,再将点坐标代入反比例函数解析式中即可得出结论;
(2)①先确定出点,进而求出点坐标,进而求出,,即可得出结论;
②先表示出点,坐标,再分两种情况:Ⅰ、当时,判断出点在的垂直平分线上,即可得出结论;
Ⅱ、当时,先表示出,用建立方程求解即可得出结论.
(1)∵点在直线上,
∴,
∴,
∴直线的解析式为,
将点代入直线的解析式中,得,
∴,
∴,
将在反比例函数解析式()中,得;
(2)①由(1)知,,,∴反比例函数解析式为,
当时,
∴将线段向右平移3个单位长度,得到对应线段,
∴,
即:,
∵轴于点,交反比例函数的图象于点,
∴,
∴,,
∴;
②如图,∵将线段向右平移个单位长度(),得到对应线段,
∴,,
∵,,
∴,,
∵是以腰的等腰三形,
∴Ⅰ、当时,
∴,
∴点在线段的垂直平分线上,
∴,
Ⅱ、当时,
∵,,
∴,
∴,
∴,
即:是以为腰的等腰三形,满足条件的的值为4或5.
科目:初中数学 来源: 题型:
【题目】如图,直线l与x轴,y轴分别交于A,B两点,且与反比例函数y=(x>0)的图象交于点C,若S△AOB=S△BOC=1,则k=( )
A. 1B. 2C. 3D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有A、B两个黑布袋,A布袋中有四个除标号外完全相同的小球,小球上分别标有数字0,1,2,3,B布袋中有三个除标号外完全相同的小球,小球上分别标有数字0,1,2.小明先从A布袋中随机取出一个小球,用m表示取出的球上标有的数字,再从B布袋中随机取出一个小球,用n表示取出的球上标有的数字.
(1)若用(m,n)表示小明取球时m与n 的对应值,请画出树状图并写出(m,n)的所有取值;
(2)求关于x的一元二次方程有实数根的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图坐标系中,Rt△BAC的直角顶点A在y轴上,顶点B在x轴上,且OA=4,OB=6,双曲线y=经过点和斜边BC的中点D,则k=_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD是正方形,连接AC,将绕点A逆时针旋转α得,连接CF,O为CF的中点,连接OE,OD.
(1)如图1,当时,请直接写出OE与OD的关系(不用证明).
(2)如图2,当时,(1)中的结论是否成立?请说明理由.
(3)当时,若,请直接写出点O经过的路径长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是二次函数y=x2+bx+c的图象,其顶点坐标为M(1,-4).
(1)求出图象与x轴的交点A、B的坐标;
(2)在二次函数的图象上是否存在点P,使S△PAB=S△MAB?若存在,求出点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)在△ABC中,∠BAC=60°,BC=4,则△ABC面积的最大值是 .
(2)已知:△ABC,用无刻度的直尺和圆规求作△DBC,使∠BDC+∠A=180°,且BD=DC.(注:不写作法,保留作图痕迹,对图中涉及到的点用字母进行标注,作出一个符合题意的三角形即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数的图象如图所示,对称轴是直线,下列结论:①;②;③;④;⑤方程有一正一负两个实数解.其中结论正确的个数为( )
A. 1个B. 2个C. 3个D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com