在平面直角坐标系中,已知抛物线
(b,c为常数)的顶点为P,等腰直角三角形ABC的顶点A的坐标为(0,–1),C的坐标为(4,3),直角顶点B在第四象限.
(1)如图,若该抛物线过A,B两点,求b,c的值;
(2)平移(1)中的抛物线,使顶点P在直线AC上滑动,且与直线AC交于另一点Q.
①点M在直线AC下方,且为平移前(1)中的抛物线上的点,当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,求点M的坐标;
②取BC的中点N,连接NP,BQ.当
取最大值时,点Q的坐标为________.
![]()
(1)
;(2)①(4,﹣1),(﹣2,﹣7);②
.
【解析】
试题分析:(1)先求出点B的坐标,然后利用待定系数法求即可求得b,c的值.
(2)①首先求出直线AC的解析式和线段PQ的长度,作为后续计算的基础,当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,点M到PQ的距离为
.此时,将直线AC向右平移4个单位后所得直线(y=x-5)与抛物线的交点,即为所求之M点.
②由①可知,PQ=为定值,因此当NP+BQ取最小值时,有最大值.如答图2所示,作点B关于直线AC的对称点B′,由分析可知,当B′、Q、F(AB中点)三点共线时,NP+BQ最小,进而求出点Q的坐标.
试题解析:(1)由题意,得点B的坐标为(4,﹣1).
∵抛物线过A(0,﹣1),B(4,﹣1)两点,
∴
,解得
.
(2)①由(1)得抛物线的函数表达式为:
.
∵A(0,﹣1),C(4,3),∴直线AC的解析式为:y=x﹣1.
设平移前抛物线的顶点为P0,则由(1)可得P0的坐标为(2,1),且P0在直线AC上.
∵点P在直线AC上滑动,∴可设P的坐标为(m,m﹣1).
则平移后抛物线的函数表达式为:
.
解方程组:
,解得
,
.
∴P(m,m﹣1),Q(m﹣2,m﹣3).
过点P作PE∥x轴,过点Q作QE∥y轴,则
PE=m﹣(m﹣2)=2,QE=(m﹣1)﹣(m﹣3)=2,
∴PQ=
=AP0.
当以M,P,Q三点为顶点的三角形是以PQ为腰的等腰直角三角形时,点M到PQ的距离为
(即为PQ的长),
由A(0,﹣1),B(4,﹣1),P0(2,1)可知,
△ABP0为等腰直角三角形,且BP0⊥AC,BP0=
.
如答图1,过点B作直线l1∥AC,交抛物线
于点M,则M为符合条件的点.
∴可设直线l1的解析式为:y=x+b1.
∵B(4,﹣1),∴﹣1=4+b1,解得b1=﹣5.∴直线l1的解析式为:y=x﹣5.
解方程组
,得:
,
.
∴M1(4,﹣1),M2(﹣2,﹣7).
![]()
②取点B关于AC的对称点B′,易得点B′的坐标为(0,3),BQ=B′Q.
如答图2,连接QF,FN,QB′,易得FN∥PQ,且FN=PQ,
∴四边形PQFN为平行四边形.
∴NP=FQ.
∴NP+BQ=FQ+B′Q≥FB′.
∴当B′、Q、F三点共线时,NP+BQ最小,则
取最大值,
∴点Q的坐标为
.
![]()
考点:1.二次函数综合题;2.平移问题;3.二次函数的图象与性质;4.待定系数法的应用;5.曲线上点的坐标与方程的关系;6.等腰直角三角形的判定和性质;7.轴对称的应用(最短路线问题).
科目:初中数学 来源:2014年北京市房山区中考二模数学试卷(解析版) 题型:解答题
房山某中学改革学生的学习模式,变“老师要学生学习”为“学生自主学习”,培养了学生自主学习的能力.小华与小明同学就“最喜欢哪种学习方式” 随机调查了他们周围的一些同学,根据收集到的数据绘制了以下的两个统计图.请根据下面两个不完整的统计图回答以下问题:
(1)这次抽样调查中,共调查了 名学生;
(2)补全两幅统计图;
(3)根据抽样调查的结果,估算该校1000名学生中大约有多少人选择“小组合作学习”?
![]()
查看答案和解析>>
科目:初中数学 来源:2014年北京市房山区中考一模数学试卷(解析版) 题型:选择题
如图,直线m∥n,将含有45°角的三角板ABC的直角顶点C放在直线n上,则∠1+∠2等于( )
![]()
A.30° B.40° C.45° D.60°
查看答案和解析>>
科目:初中数学 来源:2014年北京市怀柔区中考一模数学试卷(解析版) 题型:填空题
已知:顺次连接矩形各边的中点,得到一个菱形,如图①;再顺次连接菱形各边的中点,得到一个新的矩形,如图②;然后顺次连接新的矩形各边的中点,得到一个新的菱形,如图③;如此反复操作下去,则第4个图形中直角三角形的个数有________________个;第2014个图形中直角三角形的个数有_________________个.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年北京市怀柔区中考一模数学试卷(解析版) 题型:选择题
如图,铁路道口的栏杆短臂长1m,长臂长16m.当短臂端点下降0.5m时,长臂端点升高(杆的宽度忽略不计)( )
![]()
A.4m B.6m C.8m D.12m
查看答案和解析>>
科目:初中数学 来源:2014年北京市平谷区中考一模数学试卷(解析版) 题型:解答题
如图,点A、B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.
(1)求证:AC=CD.
(2)若AC=2,AO=
,求OD的长.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年北京市密云县中考一模数学试卷(解析版) 题型:解答题
如图,在Rt△ABC中,∠ACB=90°,点D是AB边上一点,以BD为直径的⊙O与边AC相切于点E,连接DE并延长DE交BC的延长线于点F.
(1)求证:BD=BF;
(2)若CF=1,cosB=
,求⊙O的半径.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年北京市东城区中考一模数学试卷(解析版) 题型:选择题
在某校“我的中国梦”演讲比赛中,有9名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前5名,不仅要了解自己的成绩,还要了解这9名学生成绩的( )
A.众数 B.方差 C.平均数 D.中位数
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com