精英家教网 > 初中数学 > 题目详情
如图,已知点P是∠ABC的平分线与∠DEC的平分线的交点,求证:点P在∠ADE的平分线上.
考点:角平分线的性质
专题:证明题
分析:过点P作PF⊥AB于F,作PH⊥BC于H,作PG⊥DE于G,根据角平分线上的点到角的两边距离相等可得PF=PG=PH,再根据到角的两边距离相等的点在角的平分线上解答.
解答:证明:过点P作PF⊥AB于F,作PH⊥BC于H,作PG⊥DE于G,
∵点P是∠ABC的平分线与∠DEC的平分线的交点,
∴PF=PH,PH=PG,
∴PF=PG=PH,
∴点P在∠ADE的平分线上.
点评:本题考查的是角平分线的性质,熟知角平分线上的点到角的两边距离相等是解题的关键.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,根据图中信息,判断下列问题:
(1)求m,n的值;
(2)写出点P的坐标;
(3)当x为何值时,y1>y2

查看答案和解析>>

科目:初中数学 来源: 题型:

如图所示,在等腰直角△ABC中,∠C=90°,AD平分∠CAB,DE⊥AB于E.若AB=8,则△DEB的周长为(  )
A、6B、8C、10D、12

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,铁路上A、B两点相距25km,C、D为两村庄,DA⊥AB于A,CB⊥AB于B,已知DA=15km,CB=10km,现在要在铁路AB上建一个土特产品收购站E,使得C、D两村到E站的距离相等.
(1)在图上画出点E的位置;
(2)求AE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB是⊙O的直径,C、D是圆上的两点.已知BC=3,AB=5,求tan∠ADC.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,某中学在主楼的顶部和大门的上方之间挂一些彩旗,经测量,得到大门的高度是5m,大门距主楼的距离是30m,在大门处测得主楼顶部的仰角是30°,而当时测倾器离地面1.4m.求:
(1)学校主楼的高度(结果精确到0.01m)
(2)大门顶部与主楼顶部的距离(结果精确到0.01m)

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,△ABC中,AB=2,BC=5,AC=4.AD、AE分别为CB边上的高和中线,求DE的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,已知平行四边形ABCD的周长为25cm,对边的距离分别为DE=2cm,DF=3cm,求:这个平行四边形的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AB为⊙O的直径,CD⊥AB,垂足为点E,交⊙O于点C和点D,OF⊥AC,垂足为点F.
(1)请写出三条与BC有关的正确结论;
(2)当∠D=30°,BC=1时,求AF的长.

查看答案和解析>>

同步练习册答案