【题目】如图,在中,,,将绕点顺时针方向旋转到的位置,连接,求的长?
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于点A和点B(3,0),与轴交于点C(0,3).
(1)求抛物线的解析式;
(2)若点M是抛物线在轴下方上的动点,过点M作MN//轴交直线BC于点N,求线段MN的最大值;
(3)在(2)的条件下,当MN取最大值时,在抛物线的对称轴上是否存在点P,使△PBN是等腰三角形?若存在,请直接写出所有点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图(1),在△ABC中,如果正方形PQMN的边QM在BC上,顶点P,N分别在AB,AC上,那么我们称这样的正方形为“三角形内接正方形”小波同学按数学家波利亚在《怎样解题》中的方法进行操作:如图(2),任意画△ABC,在AB上任取一点P′,画正方形P′Q′M′N′,使Q′,M′在BC边上,N′在△ABC内,连结BN′并延长交AC于点N,画NM⊥BC于点M,NP⊥NM交AB于点P,PQ⊥BC于点Q,得到四边形PQMN,小波把线段BN称为“波利亚线”,请帮助小波解决下列问题:
(1)四边形PQMN是否是△ABC的内接正方形,请证明你的结论;
(2)若△ABC为等边三角形,边长BC=6,求△ABC内接正方形的边长;
(3)如图(3),若在“波利亚线”BN上截取NE=NM,连结EQ,EM.当时,猜想∠QEM的度数,并说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在平面直角坐标系中,为坐标原点.直线与抛物线同时经过.
(1)求的值.
(2)点是二次函数图象上一点,(点在下方),过作轴,与交于点,与轴交于点.求的最大值.
(3)在(2)的条件下,是否存在点,使和相似?若存在,求出点坐标,不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们定义:对于抛物线y,以y轴上的点M(0,m)为中心,作该抛物线关于点M对称的抛物线y′,则我们称抛物线y′为抛物线y关于点M(0,m)的“衍生抛物线”,点M为“衍生中心”.
(1)求抛物线y=x2-2关于原点O(0,0)的衍生抛物线的解析式.
(2)已知抛物线y=ax2+2ax-b(a≠0)
①若抛物线y的衍生抛物线为y′=bx2-2bx+a2(b≠0),两抛物线有两个交点,且恰好是它们的顶点,求a、b的值及衍生中心的坐标;
②若抛物线y关于点(0,k+12)的衍生抛物线为y1,其顶点为A1;关于点(0,k+22)的衍生抛物线为y2,其顶点为A2;……;关于点(0,k+n2)的衍生抛物线为yn,其顶点为An…(n为正整数).求AnAn+1的长(用含n的式子表示).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】观察下表:
x | 0 | 1 | 2 |
ax2 |
| 1 |
|
ax2+bx+c | ﹣3 |
| ﹣3 |
(1)求a、b、c的值,并在表内空格处填入正确的数;
(2)根据上面的结果解答问题:
①在方格纸中画出函数y=ax2+bx+c的图象;
②根据图象回答:当x的取值范围是 时,y≤0?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】一个不透明的纸箱里有分别标有汉字“热”“爱”“祖”“国”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先摇匀再摸球.
(1)若从中任取一个球,求摸出球上的汉字刚好是“国”字的概率;
(2)小红从中任取球,不放回,再从中任取一球,请用树状图或列表法,求小红取出的两个球上的汉字恰好能组成“爱国”或“祖国”的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校七年级学生作业时间情况,随机抽取了该校七年级部分学生进行调查,并根据调查结果绘制了如下的统计图.
作业时间分组表(单位:小时)
别 | 作业时间 | 人数 | 频率 |
A | 1≤x≤1.5 | 5 | 0.1 |
B | 1.5≤x≤2 | 20 | b |
C | 2≤x≤2.5 | m | n |
D | x≥2.5 | 7 | 0.14 |
小计 | a | 1 |
(1)统计图中的a=______;b=______;m=______;n=______.
(2)求出C组的扇形的圆心角度数.
(3)如果该校七年级学生共400名,试估计这400名生作业时间在B组和C组的人数共有多少人?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】怡然美食店的A、B两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.
(1)该店每天卖出这两种菜品共多少份?
(2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com