精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形ABCD中,ADBC,∠A=90°,BD=BC,点ECD的中点,射线BEAD的延长线于点F,连接CF

(1)求证:四边形BCFD是菱形;

(2)若AD=1,BC=2,求BF的长.

【答案】(1)证明见解析(2)2

【解析】

(1)∵AFBC,∴∠DCB=∠CDF,∠FBC=∠BFD

∵点ECD的中点,∴DE=EC

在△BCE与△FDE中,

∴△BCE≌△FDE,∴DF=BC

又∵DFBC,∴四边形BCDF为平行四边形,

BD=BC,∴四边形BCFD是菱形;

(2)∵四边形BCFD是菱形,∴BD=DF=BC=2,

在Rt△BAD中,AB=

AF=AD+DF=1+2=3,在Rt△BAF中,BF==2

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】我国中东部地区雾霾天气趋于严重,环境治理已刻不容缓.我市某电器商场根据民众健康需要,代理销售某种家用空气净化器,其进价是200/台.经过市场销售后发现:在一个月内,当售价是400/台时,可售出200台,且售价每降低10元,就可多售出50台.若供货商规定这种空气净化器售价不能低于300/台,代理销售商每月要完成不低于450台的销售任务.

1)试确定月销售量y(台)与售价x(元/台)之间的函数关系式;并求出自变量x的取值范围;

2)当售价x(元/台)定为多少时,商场每月销售这种空气净化器所获得的利润w(元)最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(阅读材料)

数学家华罗庚在一次出国访问途中,看到飞机上邻座的乘客阅读的杂志上有一道智力题:求59319的立方根.华罗庚脱口而出:“39”.邻座的乘客十分惊奇,忙间其中计算的奥妙.

你知道怎样迅速准确的计算出结果吗?请你按下面的步骤试一试:

第一步:∵

∴能确定59319的立方根是个两位数.

第二步:∵59319的个位数是9

∴能确定59319的立方根的个位数是9

第三步:如果划去59319后面的三位319得到数59

,则,可得

由此能确定59319的立方根的十位数是3,因此59319的立方根是39

(解答问题)

根据上面材料,解答下面的问题

1)求110592的立方根,写出步骤.

2)填空:__________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用一条直线 m 将如图 1 的直角铁皮分成面积相等的两部分.图 2、图 3 分别是甲、乙两同学给出的作法,对于两人的作法判断正确的是(

A. 甲正确,乙不正确B. 甲不正确,乙正确

C. 甲、乙都正确D. 甲、乙都不正确

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个等腰三角形的周长为25cm.

(1)已知腰长是底边长的2倍,求各边的长;

(2)已知其中一边的长为6cm.求其它两边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,要设计一副宽20 cm、长30 cm的图案,其中有一横一竖的彩条,横、竖彩条的宽度之比为23.如果要彩条所占面积是图案面积的19%,问横、竖彩条的宽度各为多少cm

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图.在数学活动课中,小明剪了一张△ABC的纸片,其中∠A=60°,他将△ABC折叠压平使点A落在点B处,折痕DE,DAB上,EAC上.

(1)请作出折痕DE;(要求:尺规作图,不写作法,保留作图痕迹)

(2)判断△ABE的形状并说明;

(3)若AE=5,BCE的周长为12,求△ABC的周长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,四边形ABCD是正方形,ECD的中点,PBC边上的一点,下列条件:BC的中点;3,其中能推出的有  

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)探究1:如图1,P是△ABC的内角∠ABC与∠ACB的平分线BPCP的交点,若∠A=70,则∠BPC=_______度;

(2)探究2:如图2P是△ABC的外角∠DBC与外角∠ECB的平分线BPCP的交点,求∠BPC与∠A的数量关系?并说明理由。

(3)拓展:如图3P是四边形ABCD的外角∠EBC与∠BCF的平分线BPCP的交点,设∠A+D=α.,直接写出∠BPCα的数量关系;

查看答案和解析>>

同步练习册答案