【题目】如图,在平面直角坐标系中,∠ACB=90°,OC=2OB,tan∠ABC=2,点B的坐标为(1,0).抛物线y=﹣x2+bx+c经过A、B两点.
(1)求抛物线的解析式;
(2)点P是直线AB上方抛物线上的一点,过点P作PD垂直x轴于点D,交线段AB于点E,使PE最大.
①求点P的坐标和PE的最大值.
②在直线PD上是否存在点M,使点M在以AB为直径的圆上;若存在,求出点M的坐标,若不存在,请说明理由.
【答案】(1)y=﹣x2﹣3x+4;(2)①,P② M(,)或(,)
【解析】
(1)先根据已知求点A的坐标,利用待定系数法求二次函数的解析式;
(2)①根据A(﹣2,6),B(1,0),求得AB的解析式为:y=﹣2x+2,设P(a,﹣a2﹣3a+4),则E(a,﹣2a+2),利用PE=﹣a2﹣3a+4﹣(﹣2a+2)=﹣(a+)2+,根据二次函数的图像与性质即求解;
②根据点M在以AB为直径的圆上,得到∠AMB=90°,即AM2+BM2=AB2,求出,,AB2故可列出方程求解.
解:(1)∵B(1,0)
∴OB=1,
∵OC=2OB=2,
∴BC=3 ,C(﹣2,0)
Rt△ABC中,tan∠ABC=2,
∴=2,
∴AC=6,
∴A(﹣2,6),
把A(﹣2,6)和B(1,0)代入y=﹣x2+bx+c得:,
解得:,
∴抛物线的解析式为:y=﹣x2﹣3x+4;
(2)①∵A(﹣2,6),B(1,0),
易得AB的解析式为:y=﹣2x+2,
设P(a,﹣a2﹣3a+4),则E(a,﹣2a+2),
∴PE=﹣a2﹣3a+4﹣(﹣2a+2)=﹣a2﹣a+2=﹣(a+)2+
∴当a=时,PE=,此时P(,)
②∵M在直线PD上,且P(,),
∴
+
AB2=32+62=45,
∵点M在以AB为直径的圆上
此时∠AMB=90°,
∴AM2+BM2=AB2,
∴++=45
解得: ,
∴M(,)或(,)
科目:初中数学 来源: 题型:
【题目】在Rt△ABC中,CD为斜边AB上的高,AC=3,BC=4,分别用r、r1、r2、表示△ABC,△ACD,△BCD内切圆的半径,则( )
A.r+r1+r2=B.r+r1+r2=
C.r﹣r1﹣r2=﹣D.r﹣r1﹣r2=﹣
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(﹣1,0)、C(0,﹣3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,一次函数y=﹣x+2的图象与x轴交于点A与反比例函数(x<0)的图象交于点B,过点B作BC⊥x轴于点C,且OA=OC.
(1)求点A的坐标和反比例函数的表达式;
(2)若点P是反比例函数(x<0)的图象上的点,过P作PQ∥y轴,交直线AB于点Q,当PQ=BC时,求点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx﹣经过点A(1,0)和点B(5,0),与y轴交于点C.
(1)求此抛物线的解析式;
(2)以点A为圆心,作与直线BC相切的⊙A,求⊙A的半径;
(3)在直线BC上方的抛物线上任取一点P,连接PB,PC,请问:△PBC的面积是否存在最大值?若存在,求出这个最大值的此时点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,若果∠1=∠2,那么添加下列任何一个条件:(1),(2),(3)∠B=∠D,(4)∠C=∠AED, 其中能判定△ABC∽△ADE的个数为
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,,,△A2B2B3 是全等的等边三角形,点 B,B1,B2,B3 在同一条 直线上,连接 A2B 交 AB1 于点 P,交 A1B1 于点 Q,则 PB1∶QB1 的值为___.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,在中,把绕点逆时针旋转()并延长一倍得到,把绕点顺时针旋转并延长一倍得到,连接.当时,称是的“倍旋三角形”,边上的中线叫做的“倍旋中线”.
特例感知:
(1)如图1,当,时,则“倍旋中线”长为______;如图2,当为等边三角形时,“倍旋中线”与的数量关系为______;
猜想论证:
(2)在图3中,当为任意三角形时,猜想“倍旋中线”与的数量关系,并给予证明.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com