【题目】初二年級教师对试卷讲评课中学生参与的深度与广度进行评价调査,其评价项目为主动质疑、独立思考、专注听讲、讲解题目四项.评价组随机抽取了若干名初二学生的参与情况,绘制成如图所示的频数分布直方图和扇形统计图(均不完整),请根据图中所给信息解答下列问题:
(1)在这次评价中,一共抽査了 名学生;
(2)在扇形统计图中,项目“主动质疑”所在的扇形的圆心角的度数为 度;
(3)请将频数分布直方图补充完整:
(4)如果全市有30000名初二学生,那么在试卷评讲课中,请估计“独立思考”的约有多少人?
【答案】(1)560;(2)54;(3)详见解析;(4)9000.
【解析】
(1)利用专注听讲的人数除以其所占的百分比即可求得这次调查的人数;(2)利用360°乘以主动质疑的人数所占的百分比即可求解;(3)求得讲解题目的人数,补全统计图即可;(4)利用总人数乘以独立思考人数所占的百分比即可求解.
(1)调查的总人数是:224÷40%=560(人),
故答案是:560;
(2)“主动质疑”所在的扇形的圆心角的度数是:360°× =54°,
故答案是:54;
(3)“讲解题目”的人数是:560﹣84﹣168﹣224=84(人).
;
(4)在试卷评讲课中,“独立思考”的初三学生约有:30000×=9000(人).
科目:初中数学 来源: 题型:
【题目】由一些大小相等的小正方体组成的几何体的主视图与左视图相同如图所示,设组成这个几何体的小正方体个数最少为m,最多为n,若以m,n的值分别为某个等腰三角形的两条边长,则该等腰三角形的周长为( )
A. 11或13B. 13或14C. 13D. 12或13或14或15
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与x轴交于点A,B两点(点A在点B左边),与y轴交于点C.
(1)求A,B两点的坐标.
(2)点P是线段BC下方的抛物线上的动点,连结PC,PB.
①是否存在一点P,使△PBC的面积最大,若存在,请求出△PBC的最大面积;若不存在,试说明理由.
②连结AC,AP,AP交BC于点F,当∠CAP=∠ABC时,求直线AP的函数表达式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两名同学分别进行6次射击训练,训练成绩(单位:环)如下表
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六交 | |
甲 | 9 | 8 | 6 | 7 | 8 | 10 |
乙 | 8 | 7 | 9 | 7 | 8 | 8 |
对他们的训练成绩作如下分析,其中说法正确的是( )
A. 他们训练成绩的平均数相同 B. 他们训练成绩的中位数不同
C. 他们训练成绩的众数不同 D. 他们训练成绩的方差不同
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AD为边BC上的中线,且AD平分∠BAC.嘉淇同学先是以A为圆心,任意长为半径画弧,交AD于点P,交AC于点Q,然后以点C为圆心,AP长为半径画弧,交AC于点M,再以M为圆心,PQ长为半径画弧,交前弧于点N,作射线CN,交BA的延长线于点E.
(1)通过嘉淇的作图方法判断AD与CE的位置关系是 ,数量关系是 ;
(2)求证:AB=AC;
(3)若BC=24,CE=10,求△ABC的内心到BC的距离.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是⊙O的直径,点D,E在⊙O上,∠B=2∠ADE,点C在BA的延长线上.
(Ⅰ)若∠C=∠DAB,求证:CE是⊙O的切线;
(Ⅱ)若OF=2,AF=3,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,BD平分∠ABC,点O在AB上,以点O为圆心,OB为半径的圆经过点D,交BC于点E
(1)求证:AC是⊙O的切线;(2)若OB=2,CD=,求图中阴影部分的面积(结果保留).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商店老板准备购买A、B两种型号的足球共100只,已知A型号足球进价每只40元,B型号足球进价每只60元.
(1)若该店老板共花费了5200元,那么A、B型号足球各进了多少只;
(2)若B型号足球数量不少于A型号足球数量的,那么进多少只A型号足球,可以让该老板所用的进货款最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在边长为1的小正方形网格中,点A,B,C,D都在这些小正方形上,AB与CD相交于点O,则tan∠AOD等于( )
A. B. 2C. 1D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com