【题目】在Rt△ABC中,∠C=90°.
(1)按要求尺规作图,保留作图痕迹
①作∠ABC平分线交AC于F点,
②作BF的垂直平分线交AB于M,以MB为半径作圆⊙M;
(2)在(1)所作图形中,证明⊙M与边AC相切;
(3)在(1)所作图形中,若∠CFB=∠CBA,BC=3,求⊙M的半径.
【答案】(1)①作图见解析;②作图见解析;(2)证明见解析;(3)
【解析】
(1)①根据尺规作图过程作∠ABC平分线交AC于F点即可;②作BF的垂直平分线交AB于M,以MB为半径做⊙M即可;
②作BF的垂直平分线交AB于M,以MB为半径作圆⊙M与边AC相切;
(2)在(1)所作图形中,根据切线的判定得出FM⊥AC,即可证明⊙M与边AC相切;
(3)在(1)所作图形中,根据∠CFB=∠CBA,BC=3,角平分线的性质,求出∠A的度数,即可求⊙M的半径.
解:(1)如图所示①BF即为所求;
②如图所示⊙M为所求;
(2)证明:∵M在BF的垂直平分线上,
∴MF=MB,
∴∠MBF=∠MFB,
又∵BF平分∠ABC,
∴∠MBF=∠CBF,
∴∠CBF=∠MFB,
∴MF∥BC,
∵∠C=90°,
∴FM⊥AC,
∴⊙M与边AC相切;
(3)∵∠CFB=∠CBA,
∴∠A=∠CBF,
∴∠A=∠CBF=∠ABF,
∴∠A=30°,
∵BC=3,
∴AB=6,
设⊙M的半径为x,
∴MF=MB=x,则AM=2x,
∵MB+AM=AB,
∴3x=6,
∴x=2,
∴⊙M的半径为2.
科目:初中数学 来源: 题型:
【题目】如图是由边长为1的小正方形构成的网格,每个小正方形的顶点叫格点,的顶点都在格点上,仅用无刻度的直尺在网格中画图(保留作图连线痕迹),并回答问题.
(1)在的右边找格点,连,使平分.
(2)若与交于,直接写出的值.
(3)找格点,连,使于.
(4)在上找点,连,使.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一次函数的图象与反比例函数的图象交于点,与交于点,与轴交于点轴于点,且.
(1)求一次函数和反比例函数的解析式;
(2)点为反比例函数图象上使得四边形为菱形的一点,点为轴上的一动点,当最大时,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为进一步提升学生的法律素质,中学组织学生开展《宪法》知识竞赛,该学校随机抽取部分学生的成绩并进行统计分析,以了解学生的法律知识水平.根据这些学生的竞赛成绩分布情况,将竞赛成绩分为甲、乙、丙、丁、戊五个等级.图表如下:
等级 | 分数/分 | 频数 | 各组总分/分 |
甲 | 39 | 2184 | |
乙 | 75 | 5175 | |
丙 | 120 | 9720 | |
丁 | 4050 | ||
戊 | 21 | 2037 |
(1)求的值;
(2)竞赛成绩的中位数落在哪个等级?
(3)求这组竞赛成绩的平均值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂直为D,若OB=2OA=3OD=6.
(1)求一次函数与反比例函数的解析式;
(2)求两函数图象的另一个交点坐标;
(3)直接写出不等式;kx+b≤的解集.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将两个全等的直角三角形ABC和DBE按图①方式摆放,其中∠ACB=∠DEB=90°,∠A=∠D=30°,点E落在AB上,DE所在直线交AC所在直线于点F.
(1)求证:AF+EF=DE;
(2)若将图①中的△DBE绕点B按顺时针方向旋转角α,且0°<α<60°,其它条件不变,请在图②中画出变换后的图形,并直接写出你在(1)中猜想的结论是否仍然成立;
(3)若将图①中的△DBE绕点B按顺时针方向旋转角β,且60°<β<180°,其它条件不变,如图③.你认为(1)中猜想的结论还成立吗?若成立,写出证明过程;若不成立,请写出AF、EF与DE之间的关系,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某产品每件成本10元,试销阶段每件产品的销售价x(元)与产品的日销售量y(件)之间的关系如图.
(1)求日销售量y(件)与每件产品的销售价x(元)之间的函数表达式;
(2)当每件产品的销售价定为多少元时,此时每日的销售利润最多,最多是多少元.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系,抛物线的图象与轴交于、两点,与轴交于点.
备用图
(1)求抛物线的解析式.
(2)点是直线上方的抛物线上一点,连接、、,与轴交于.
①点是轴上一动点,连接,当以、、为顶点的三角形与相似时,求出线段的长;
②点为轴左侧抛物线上一点,过点作直线的垂线,垂足为,若,请直接写出点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在数学实践与综合课上,某兴趣小组同学用航拍无人机对某居民小区的1、2号楼进行测高实践,如图为实践时绘制的截面图.无人机从地面点B垂直起飞到达点A处,测得1号楼顶部E的俯角为67°,测得2号楼顶部F的俯角为40°,此时航拍无人机的高度为60米,已知1号楼的高度为20米,且EC和FD分别垂直地面于点C和D,点B为CD的中点,求2号楼的高度.(结果精确到0.1)(参考数据sin40°≈0.64,cos40°≈0.77,tan40°≈0.84,sin67°≈0.92,cos67°≈0.39,tan67°≈2.36)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com