精英家教网 > 初中数学 > 题目详情

【题目】如图,A、B、C为⊙O上的点,PC过O点,交⊙O于D点,PD=OD,若OB⊥AC于E点.
(1)判断A是否是PB的中点,并说明理由;
(2)若⊙O半径为8,试求BC的长.

【答案】
(1)解:A是PB的中点,

理由:连接AD,

∵CD是⊙O的直径,

∴AD⊥AC,

∵OB⊥AC,

∴AD∥OB,

∵PD=OD,

∴PA=AB,

∴A是PB的中点


(2)∵AD∥OB,

∴△APD∽△BPO,

∵⊙O半径为8,

∴OB=8,

∴AD=4,

∴AC= =4

∵OB⊥AC,

∴AE=CE=2

∵OE= AD=2,

∴BE=6,

∴BC= =4


【解析】(1)连接AD,由CD是⊙O的直径,得到AD⊥AC,推出AD∥OB,根据平行线等分线段定理得到PA=AB;(2)根据相似三角形的性质得到OB=8,求得AD=4,根据勾股定理得到AC= =4 ,根据垂径定理得到AE=CE=2 ,由勾股定理即可得到结论
【考点精析】掌握勾股定理的概念和垂径定理是解答本题的根本,需要知道直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;垂径定理:平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(0,a)、Bb,0)、Cc,0),且=0.

(1)直接写出 ABC 各点的坐标:A_______B__________C_____

(2)过 B 作直线 MNABP 为线段 OC 上的一动点,APPH 交直线 MN 于点 H,证明:PAPH

(3)在(1)的条件下,若在点 A 处有一个等腰 Rt△APQ 绕点 A 旋转,且 APPQ,∠APQ=90°,连接 BQ,点 G BQ 的中点,试猜想线段 OG 与线段 PG 的数量关系与位置关系,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】二次函数y=(m+2)x2﹣2(m+2)x﹣m+5,其中m+2>0.
(1)求该二次函数的对称轴方程;
(2)过动点C(0,n)作直线l⊥y轴. ①当直线l与抛物线只有一个公共点时,求n与m的函数关系;
②若抛物线与x轴有两个交点,将抛物线在x轴下方的部分沿x轴翻折,图象的其余部分保持不变,得到一个新的图象.当n=7时,直线l与新的图象恰好有三个公共点,求此时m的值;
(3)若对于每一个给定的x的值,它所对应的函数值都不小于1,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】从2开始,连续的偶数相加,它们和的情况如表:

加数的个数n

S

1

2=1×2

2

2+4=6=2×3

3

2+4+6=15=3×4

4

2+4+6+8=20=4×5

5

2+4+6+8+10=30=5×6


(1)根据表中的规律猜想:用n的式子表示S的公式为:S=2+4+6+8+…+2n=
(2)如下数表是由从1开始的连续自然数组成,观察规律:

①第n行的第一个数可用含n的式子表示为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD是某新建厂区示意图,∠A=75°,∠B=45°,BC⊥CD,AB=500 米,AD=200米,现在要在厂区四周建围墙,求围墙的长度有多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,在四边形ABCD中,DCABBD平分ABCCD=4.

(1)求BC的长;

(2)如图2,若ABC=60°,过点DDEAB,过点CCFBD,垂足分别为EF,连接EF.请判断DEF的形状并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】把一张对边互相平行的纸条,折成如图所示,EF是折痕,若∠EFB=32°,则下列结论正确的有( )

(1)∠C′EF=32°;(2)∠AEC=148°;(3)∠BGE=64°;(4)∠BFD=116°.

A. 1个 B. 2个 C. 3个 D. 4个

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在ABC 中,AB=AC,C=70°,AB′C′ABC 关于直线 EF对称,∠CAF=10°,连接 BB′,则∠ABB′的度数是(

A. 30° B. 35° C. 40° D. 45°

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两地之间有一条笔直的公路,小明从甲地出发沿公路步行前往乙地,同时小亮从乙地出发沿公路骑车前往甲地,小亮到达甲地停留一段时间,原路原速返回,追上小明后两人一起步行到乙地.设小明与甲地的距离为(m),小亮与甲地的距离为(m),小明与小亮之间的距离为(m),小明行走的时间为(min).之间的函数图象如图①,之间的函数图象(部分)如图②.

(1)求小亮从乙地到甲地过程中(m)(min)之间的函数表达式;

(2)求小亮从甲地返回到与小明相遇的过程中(m)( min)之间的函数表达式;

(3)在图②中,补全整个过程中(m)(min)之间的函数图象,并确定的值.

查看答案和解析>>

同步练习册答案