精英家教网 > 初中数学 > 题目详情

【题目】如图,已知抛物线经过A(﹣20),B(﹣33)及原点O,顶点为C

1)求抛物线的解析式;

2)若点D在抛物线上,点E在抛物线的对称轴上,且AODE为顶点的四边形是平行四边形,求点D的坐标;

3P是抛物线上的第一象限内的动点,过点PPMx轴,垂足为M,是否存在点P,使得以PMA为顶点的三角形BOC相似?若存在,求出点P的坐标;若不存在,请说明理由.

【答案】1)抛物线的解析式为y=x2+2x;(2D1-1-1),D2-33),D313);(3)存在,P)或(315).

【解析】

1)根据抛物线过A20)及原点可设y=ax-2x,然后根据抛物线y=ax-2xB33),求出a的值即可;

2)首先由A的坐标可求出OA的长,再根据四边形AODE是平行四边形,D在对称轴直线x=-1右侧,进而可求出D横坐标为:-1+2=1,代入抛物线解析式即可求出其横坐标;

3)分PMA∽△COBPMA∽△BOC表示出PMAM,从而表示出点P的坐标,代入求得的抛物线的解析式即可求得t的值,从而确定点P的坐标.

解:(1)根据抛物线过A(-20)及原点,可设y=ax+2)(x-0),

又∵抛物线y=ax+2xB(-33),

∴-3(-3+2a=3

a=1

∴抛物线的解析式为y=x+2x=x2+2x

2)①若OA为对角线,则D点与C点重合,点D的坐标应为D(-1-1);

②若OA为平行四边形的一边,则DE=OA,∵点E在抛物线的对称轴上,

∴点E横坐标为-1

∴点D的横坐标为1-3,代入y=x2+2xD13)和D-33),

综上点D坐标为(-1-1),(-33),(13).

3)∵点B(-33C(-1-1),

∴△BOC为直角三角形,∠COB=90°,且OCOB=13

①如图1

PMA∽△COB,设PM=t,则AM=3t

∴点P3t-2t),

代入y=x2+2x得(-2+3t2+2(-2+3t=t

解得t1=0(舍),t2=

P()

②如图2

PMA∽△BOC

PM=3t,则AM=t,点P(t-2,3t),代入y=x2+2x得(-2+t2+2(-2+t=3t

解得t1=0(舍),t2=5

P315

综上所述,点P的坐标为()或(315).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】因“抗击疫情”需要,学校决定再次购进一批医用一次性口罩及KN95口罩共1000只,已知1只医用一次性口罩和10KN95口罩共需113元;3只医用一次性口罩和5KN95口罩共需64元.问:

1)一只医用一次性口罩和一只KN95口罩的售价分别是多少元?

2)参照上次购买获得的需求情况后,校长给出了一条建议:医用一次性口罩的购买量不能多于KN95口罩数量的2倍,请你遵循校长建议给出最省钱的购买方案,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系xOy中,直线与双曲线相交于点

求双曲线的表达式;

过动点且垂直于x轴的直线与直线及双曲线的交点分别为BC,当点B位于点C下方时,求出n的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知中,DE分别在ABAC上,下列条件中,能推断相似的有(  )

①∠BDE+C=180°;②;③;④∠A=90°,且

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,某地有甲、乙两栋建筑物,小明于乙楼楼顶A点处看甲楼楼底D点处的俯角为45°,走到乙楼B点处看甲楼楼顶E点处的俯角为60°,已知AB=6mDE=10m.求乙楼的高度AC的长.(参考数据:,精确到0.1m.)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】201912月以来,湖北省武汉市部分医院陆续发现不明原因肺炎病例,现已证实该肺炎为一种新型冠状病毒感染的肺炎,其传染性较强.为了有效地避免交叉感染,需要采取以下防护措施:①戴口罩;②勤洗手;③少出门;④重隔离;⑤捂口鼻;⑥谨慎吃.某公司为了解员工对防护措施的了解程度(包括不了解、了解很少、基本了解和很了解),通过网上问卷调查的方式进行了随机抽样调查(每名员工必须且只能选择一项),并将调查结果绘制成如下两幅统计图.

请你根据上面的信息,解答下列问题

1)本次共调查了_______名员工,条形统计图中________

2)若该公司共有员工1000名,请你估计不了解防护措施的人数;

3)在调查中,发现有4名员工对防护措施很了解,其中有3名男员工、1名女员工.若准备从他们中随机抽取2名,让其在公司群内普及防护措施,求恰好抽中一男一女的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场经营一种商品,进价是每千克30元,根据市场调查发现,每日的销售量(千克)与售价(元/千克)满足一次函数关系,下表记录的是某两日的有关数据:

1)求的函数关系式;

2)在销售过程中销售单价不低于成本价,且不高于80元,某日该商场出售这种商品获得了14000元的利润,求该商品的售价?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,半径为5A中,弦BCED所对的圆心角分别是BACEAD.已知DE=6BAC+EAD=180°,则弦BC的弦心距等于

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在滑草过程中,小明发现滑道两边形如两条双曲线,如图,点A1A2A3…在反比例函数yx0)的图象上,点B1B2B3…反比例函数yk1x0)的图象上,A1B1A2B2…∥y轴,已知点A1A2…的横坐标分别为12,…,令四边形A1B1B2A2A2B2B3A3、…的面积分别为S1S2、….若S1939,则k__

查看答案和解析>>

同步练习册答案