【题目】如图,矩形ABCD中,AB=4,AD=2,E为AB的中点,F为EC上一动点,P为DF中点,连接PB,则PB的最小值是_____.
【答案】
【解析】
根据中位线定理可得出点P的运动轨迹是线段P1P2,再根据垂线段最短可得当BP⊥P1P2时,PB取得最小值;由矩形的性质以及已知的数据即可知BP1⊥P1P2,故BP的最小值为BP1的长,由勾股定理求解即可.
如图:
当点F与点C重合时,点P在P1处,CP1=DP1,
当点F与点E重合时,点P在P2处,EP2=DP2,
∴P1P2∥CE且P1P2=CE,
当点F在EC上除点C、E的位置处时,有DP=FP,由中位线定理可知:P1P∥CE且P1P=CF,
∴点P的运动轨迹是线段P1P2,
∴当BP⊥P1P2时,PB取得最小值,
∵矩形ABCD中,AB=4,AD=2,E为AB的中点,
∴△CBE、△ADE、△BCP1为等腰直角三角形,CP1=2,
∴∠ADE=∠CDE=∠CP1B=45°,∠DEC=90°,
∴∠DP2P1=90°,
∴∠DP1P2=45°,
∴∠P2P1B=90°,即BP1⊥P1P2,
∴BP的最小值为BP1的长,
在等腰直角△BCP1中,CP1=BC=2
∴BP1=2,
∴PB的最小值是2.
故答案为:2.
科目:初中数学 来源: 题型:
【题目】如图,在直角坐标系xOy中,二次函数y=x2+(2k﹣1)x+k+1的图象与x轴相交于O、A两点.
(1)求这个二次函数的解析式;
(2)在这条抛物线的对称轴右边的图象上有一点B,使△AOB的面积等于6,求点B的坐标;
(3)对于(2)中的点B,在此抛物线上是否存在点P,使∠POB=90°?若存在,求出点P的坐标,并求出△POB的面积;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=x经过点A,作AB⊥x轴于点B,将△ABO绕点B逆时针旋转60°得到△CBD,若点B的坐标为(2,0),则点C的坐标为 .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在矩形中,,,,,将绕点从处开始按顺时针方向旋转,交边(或)于点,交边(或)于点,当旋转至处时,停止旋转.
(1)特殊情形:如图2,发现当过点时,PN也恰巧过点,此时 (填“≌”或“∽”);
(2)类比探究:如图3,在旋转过程中,的值是否为定值?若是,请求出该定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在等边三角形ABC中,BC=6cm,射线AG∥BC,点E从A出发沿射线AG以1cm/s的速度与运动,同时点F从点B出发沿射线BC以2cm/s的速度运动,设运动时间为t(s).
(1)连接EF,当EF经过AC边的中点D是,求证△ADE≌△CDF;
(2)填空题:①当t为________s时,四边形ACFE是菱形;
②当t为________s时,以A,C,F,E为顶点的四边形为平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,的位置如图所示:(每个小方格都是边长为1个单位长度的正方形)
(1)画出关于点的中心对称图形△;
(2)将绕着点逆时针旋转,画出旋转后得到的△;
(3)请利用格点图,仅用无刻度的直尺画出边上的高(保留作图痕迹);
(4)P为轴上一点,且△PBC是以BC为直角边的直角三角形.请直接写出点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某专卖店准备购进甲、乙两种运动鞋,其进价和售价如下表所示。已知用3000元购进甲种运动鞋的数量与用2400元购进乙种运动鞋的数量相同.
运动鞋价格 | 甲 | 乙 |
进价元/双) | m | m-30 |
售价(元/双) | 300 | 200 |
(1)求m的值;
(2)要使购进的甲,乙两种运动鞋共200双的总利润不少于21700元且不超过22300元,问该专卖店有几种进货方案?
(3)在(2)的条件下,专卖店决定对甲种运动鞋每双优惠a(60<a<80)元出售,乙种运动鞋价格不变,那么该专卖店要获得最大利润应如何进货?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+3交x轴于点A(﹣1,0)和点B(3,0),与y轴交于点C.
(1)求抛物线的解析式;
(2)连接BC,若点P为线段BC上的一个动点(不与点B、点C重合),过点P作直线PN⊥x轴于点N,交抛物线于点M,当△BCM面积最大时,求△BPN的周长.
(3)在(2)的条件下,当△BCM面积最大时,在抛物线的对称轴上是否存在点Q,使△CNQ为等腰三角形?若存在,请求出点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com