【题目】如图,在平行四边形ABCD中,E、F分别是DA、BC延长线上的点,且∠ABE=∠CDF.
求证:(1)△ABE≌△CDF;
(2)四边形EBFD是平行四边形.
【答案】(1)见解析;(2)见解析.
【解析】
(1)根据条件,由ASA即可得出△ABE≌△CDF;
(2)由全等三角形的性质得出AE=CF,由平行四边形的性质得出AD∥BC,AD=BC,证出DE=BF,即可得出四边形EBFD是平行四边形.
证明:(1)∵四边形ABD是平行四边形,
∴AB=CD,∠BAD=∠DCB,
∴∠BAE=∠DCF,
在△ABE和△CDF中,
,
∴△ABE≌△CDF(ASA);
(2)∵△ABE≌△CDF,
∴AE=CF(全等三角形对应边相等),
∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC,
∴AD+AE=BC+CF,
即DE=BF,
∴四边形EBFD是平行四边形(一组对边平行且相等的四边形是平行四边形).
科目:初中数学 来源: 题型:
【题目】市少年宫为小学生开设了绘画、音乐、舞蹈和跆拳道四类兴趣班,为了解学生对这四类兴趣班的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了一幅不完整的统计表
兴趣班 | 频数 | 频率 |
合计 |
请你根据统计表中提供的信息回答下列问题:
(1)统计表中的_____, ;
(2)根据调查结果,请你估计该市名小学生中最喜欢“绘画”兴趣班的人数;
(3)王强和李昊选择参加兴趣班,若王强从三类兴趣班中随机选取一类,李吴从三类兴趣班中随机选取一类,请用画树状图或列表格的方法,求两人恰好选中同一类兴趣班的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自从开展“线上学习”活动后,某中学体育老师为了解该校九年级一班学生在家进行体育锻炼情况.决定开设:毽子;:篮球;:跑步;:跳绳四种活动项目,为了解学生最喜欢哪一种活动项目,进行随机电话访谈部分学生,并将调查结果绘制成如下统计图,请结合图中信息解答下列问题:
(1)该校本次调查中,共调查了多少名学生?
(2)请将两个统计图补充完整;
(3)在本次调查的学生中随机抽取1人,则这个人喜欢“跳绳”的概率有多大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是十堰市的三个旅游景点:丹江口的武当山、房县的野人洞、郧西县的五龙河的部分门票价格表.某单位在国庆长假前期给每人购买了一张门票,现将购买门票的情况绘制成如图所示的柱状统计图.
景点 | 标价(元/张) |
武当山 | 200 |
野人洞 | |
五龙河 | 80 |
请依据上表、图回答下列问题:
(1)去武当山旅游的门票有________张,购买去野人洞旅游的门票占所有门票张数的____________.
(2)若该单位采取随机抽取的方式把门票分配给员工,在看不到门票的前提下,每人抽取一张(所有门票形状、大小、颜色等完全相同且充分洗匀).问员工小红抽取去武当山的门票的概率是___________.
(3)若购买去五龙河的总款数占全部款数的.试求出每张野人洞门票的价格.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,菱形ABCD的顶点B、D在反比例函数y═(k>0)的图象上,对角线AC与BD相交于坐标原点O,若点A(﹣1,2),菱形的边长为5,则k的值是( )
A.4B.8C.12D.16
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一个二次函数的图象经过点A(0,1),它的顶点为B(1,3).
(1)求这个二次函数的表达式;
(2)过点A作AC⊥AB交抛物线于点C,点P是直线AC上方抛物线上的一点,当△APC面积最大时,求点P的坐标和△APC的面积最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线经过点,与轴交于点,与反比例函数交于点,过作轴,交反比例函数于点,连接,.
(1)求,的值;
(2)求的面积;
(3)设为直线上一点,过点作轴,交反比例函数于点,若以点,,,为顶点的四边形为平行四边形,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“孝敬”、“勤劳”是中华民族的传统美德,疫情期间同学们在家里经常帮助父母做一些力所能及的家务.学校随机调查了部分同学疫情期间在家做家务的总时间,设被调查的每位同学疫情期间在家做家务的总时间为小时,现将做家务的总时间分为五个类别:,,,,.并将调查结果绘制成如下两幅不完整的统计图:
请你根据统计图中提供的信息回答下列问题:
(1)本次共调查了多少名学生?
(2)通过计算补全条形统计图;
(3)若该校共有1000名学生,请你估计该校疫情期间在家做家务的总时间不低于20小时的学生有多少名.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com