【题目】如图1,直线与相交于,两点,是的直径,是上一点,于点,连结,且平分.
(1)求证:是的切线;
(2)若,,求的半径;
(3)如图2,在(2)的条件下,点为上一动点,连接,,,问:线段,,之间存在什么数量关系?请说明理由.
【答案】(1)证明见解析;(2)的半径为;(3).
【解析】
(1)由OA=OD得∠OAD=∠ODA,由AD平分∠CAM得∠OAD=∠DAE,则∠ODA=∠DAE,所以DO∥AB,利用DE⊥AB得到DE⊥OD,然后根据切线的判定定理即可得到结论;
(2)连结DC,先利用勾股定理计算出AD长,由AC是⊙O直径得到∠ADC=90°,易证得△ACD∽△ADE,利用相似比可计算出AC,即可得到圆的半径;
(3)可得结论PC=PD+PB,连接PB、DB,在CP上截取PB=PF,连接BF、BC,可证△PBF为等边三角形,再证△PBD≌△FBC,即可得结论.
解:(1)连结,如图,
∵,
∴,
∵平分,
∴,
∴.
∴,
∵,
∴,
∴是的切线;
(2)∵,,.
∴,
连结,
∵是的直径,
∴,
∵,
∴,
又∵,
∴,
∴,
∴,
解得.
∴的半径为.
(3).
理由:连接、,延长至点,使,
∵,
∴,
∴,
∴,
∴,
∵四边形内接于,
∴,
∴,
∴,
∵,
∴为等边三角形,
∴,
∵,
∴.
科目:初中数学 来源: 题型:
【题目】如图1,在△ABC中,AB=AC=20,tanB=,点D为BC边上的动点(D不与点B,C重合).以D为顶点作∠ADE=∠B,射线DE交AC边于点E,过点A作AF⊥AD交射线DE于点F,连接CF.
(1)求证:△ABD∽△DCE;
(2)当DE∥AB时(如图2),求AE的长;
(3)点D在BC边上运动的过程中,是否存在某个位置,使得DF=CF?若存在,求出此时BD的长;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数y=与一次函数y=ax+b的图象交于点A(2,2),B(,n).
(1)求这两个函数的解析式;
(2)将一次函数y=ax+b的图象沿y轴向下平移m个单位,使平移后的图象与反比例函数y=的图象有且只有一个交点,求m的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:抛物线交x轴于A,B两点,交y轴于点C,其中点B在点A的右侧,且AB=7.
(1)如图1,求抛物线的解析式;
(2)如图2,点D在第一象限内抛物线上,连接CD,AD,AD交y轴于点E.设点D的横坐标为d,△CDE的面积为S,求S与d之间的函数关系式(不要求写出自变量d的取值范围);
(3)如图3,在(2)的条件下,过点D作DH⊥CE于点H,点P在DH上,连接CP,若∠OCP=2∠DAB,且HE:CP=3:5,求点D的坐标及相应S的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线与轴交于点,与反比例函数第一象限内的图象交于点,连接,若.
(1)求直线的表达式和反比例函数的表达式;
(2)若直线与轴的交点为,求的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,反比例函数与一次函数在第三象限交于点.点的坐标为(一3,0),点是轴左侧的一点.若以为顶点的四边形为平行四边形.则点的坐标为_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场为了吸引顾客,设计了一种促销活动:在一个不透明的箱子里放有4个相同的小球,球上分别标有“0元”、“10元”、“20元”和“30元”的字样.规定:顾客在本商场同一日内,每消费满200元,就可以在箱子里先后摸出两个球(第一次摸出后不放回),商场根据两小球所标金额的和返还相应价格的购物券,可以重新在本商场消费,某顾客刚好消费200元.
(1)该顾客至少可得到_____元购物券,至多可得到_______元购物券;
(2)请你用画树状图或列表的方法,求出该顾客所获得购物券的金额不低于30元的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着经济的快速发展,环境问题越来越受到人们的关注.某校学生会为了了解垃圾分类知识的普及情况,随机调查了部分学生,调查结果分为“非常了解”“了解”“了解较少”“不了解”四类,并将调查结果绘制成下面两幅统计图.
(1)求:本次被调查的学生有多少名?补全条形统计图.
(2)估计该校1200名学生中“非常了解”与“了解”的人数和是多少.
(3)被调查的“非常了解”的学生中有2名男生,其余为女生,从中随机抽取2人在全校做垃圾分类知识交流,请利用画树状图或列表的方法,求恰好抽到一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,直线y=kx+2k(k>0)与x轴交于点P,与双曲线(x>0)交于点Q,若直线y=4kx-2与直线PQ交于点R(点R在点Q右侧),当RQ≤PQ时,k的取值范围是__.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com