精英家教网 > 初中数学 > 题目详情

【题目】如图,已知A(﹣2,3)、B(4,3)、C(﹣1,﹣3).

(1)求点C到x轴的距离;

(2)分别求ABC的三边长;

(3)点P在y轴上,当ABP的面积为6时,请直接写出点P的坐标.

【答案】(1)3;(2)AB=6,AC=,BC=(3)(0,2),(0,﹣2).

【解析】

试题分析:(1)直接利用C点坐标得出点C到x轴的距离;

(2)利用A,C,B的坐标分别得出各边长即可;

(3)利用ABP的面积为6,得出P到AB的距离进而得出答案.

解:(1)C(﹣1,﹣3),

点C到x轴的距离为:3;

(2)A(﹣2,3)、B(4,3)、C(﹣1,﹣3),

AB=4﹣(﹣2)=6,

AC==,BC==

(3)点P在y轴上,当ABP的面积为6时,

P到AB的距离为:6÷(×6)=2,

故点P的坐标为:(0,2),(0,﹣2).

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,A(12)B(31)C(-2-1).

1)在图中作出关于轴对称的.

2)写出点的坐标(直接写答案).

A1_____________B1______________C1______________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)方法感悟:如图①,在正方形ABCD中,点EF分别为DCBC边上的点,且满足EAF=45°,连接EF.将ADE绕点A顺时针旋转90°得到ABG,易证GAFEAF,从而得到结论:DE+BF=EF.根据这个结论,若CD6DE2,求EF的长.

2)方法迁移:如图②,若在四边形ABCD中,AB=ADB+D=180°EF分别是BCCD上的点,且EAF=BAD,试猜想DEBFEF之间有何数量关系,证明你的结论.

3)问题拓展:如图③,在四边形ABCD中,AB=AD,∠B+ADC=180°EF分别是边BCCD延长线上的点,且EAF=BAD,试探究线段EFBEFD之间的数量关系,请直接写出你的猜想(不必说明理由).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,∠ACB90°OC2BOAC6,点B的坐标为(10),抛物线y=﹣x2+bx+c经过AB两点.

1)求点A的坐标;

2)求抛物线的解析式;

3)点P是直线AB上方抛物线上的一点,过点PPD垂直x轴于点D,交线段AB于点E,使PEDE

①求点P的坐标;

②在直线PD上是否存在点M,使△ABM为直角三角形?若存在,求出符合条件的所有点M的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲汽车出租公司按每100千米150元收取租车费:乙汽车出租公司按每100千米50元收取租车费,另加管理费800设用车里程为x千米租用甲、乙两家公司的汽车费用分别为元、

分别求出x之间的函数关系式;

判断x在什么范围内,租用乙公司的汽车费用比租用甲公司的汽车费用少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明在解决问题:已知a,求2a28a1的值,他是这样分析与解答的:

因为a2

所以a2=-.

所以(a2)23,即a24a43.

所以a24a=-1.

所以2a28a12(a24a)12×(1)1=-1.

请你根据小明的分析过程,解决如下问题:

(1)计算: = .

(2)计算:

(3)a,求4a28a1的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,在RtABC中,∠ACB=90°,∠B=30°,将△ABC绕点C按顺时针方向旋转,可以得到△DEC.若点D刚好落在AB边上,取DE边的中点F,连接FC,试判断四边形ACFD的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一副直角三角板如图放置,点C在FD的延长线上,ABCF,F=ACB=90°,E=45°,A=60°,AC=10,试求CD的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图(1),AB=7cmACABBDAB 垂足分别为 ABAC=5cm.点P 在线段 AB 上以 2cm/s 的速度由点 A 向点B 运动,同时,点 Q 在射线 BD 上运动.它们运 动的时间为 ts)(当点 P 运动结束时,点 Q 运动随之结束).

1)若点 Q 的运动速度与点 P 的运动速度相等,当 t=1 时,ACP BPQ 是否全等, 并判断此时线段 PC 和线段 PQ 的位置关系,请分别说明理由;

2)如图(2),若ACABBDAB改为CAB=DBA=60°”,点 Q 的运动速 度为 x cm/s,其他条件不变,当点 PQ 运动到某处时,有ACP BPQ 全等,求出相应的 xt 的值.

查看答案和解析>>

同步练习册答案