【题目】抛物线(是常数),,顶点坐标为.给出下列结论:①若点与点在该抛物线上,当时,则;②关于的一元二次方程无实数解,那么( )
A.①正确,②正确B.①正确,②错误C.①错误,②正确D.①错误,②错误
【答案】A
【解析】
①根据二次函数的增减性进行判断便可;
②先把顶点坐标代入抛物线的解析式,求得m,再把m代入一元二次方程ax2-bx+c-m+1=0的根的判别式中计算,判断其正负便可判断正误.
解:①∵顶点坐标为,
∴点(n,y1)关于抛物线的对称轴x=的对称点为(1-n,y1),
∴点(1-n,y1)与在该抛物线的对称轴的右侧图像上,
∵a>0,
∴当x>时,y随x的增大而增大,
∴y1<y2,故此小题结论正确;
②把 代入y=ax2+bx+c中,得,
∴一元二次方程ax2-bx+c-m+1=0中,
△=b2-4ac+4am-4a
∴一元二次方程ax2-bx+c-m+1=0无实数解,故此小题正确;
故选A.
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=-(x-t)(x-t+6)与直线y=x-1有两个交点,这两个交点的纵坐标为m、n.双曲线y=的两个分支分别位于第二、四象限,则t的取值范围是( )
A.t<0B.0<t<6C.1<t<7D.t<1或t>6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线与轴交于点(点在点的左侧),对称轴与轴交于点(3,0),且.
(1)求抛物线的表达式及顶点坐标;
(2)将抛物线平移,得到的新抛物线的顶点为(0,﹣1),抛物线的对称轴与两条抛物线,围成的封闭图形为.直线经过点.若直线与图形有公共点,求的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点B在直线l上,过点B构建等腰直角三角形ABC,使∠BAC=90°,且AB=AC,过点C作CD⊥直线l于点D,连接AD.
(1)小亮在研究这个图形时发现,∠BAC=∠BDC=90°,点A,D应该在以BC为直径的圆上,则∠ADB的度数为 °,将射线AD顺时针旋转90°交直线l于点E,可求出线段AD,BD,CD的数量关系为 ;
(2)小亮将等腰直角三角形ABC绕点B在平面内旋转,当旋转到图2位置时,线段AD,BD,CD的数量关系是否变化,请说明理由;
(3)在旋转过程中,若CD长为1,当△ABD面积取得最大值时,请直接写AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在某一路段,规定汽车限速行驶,交通警察在此限速路段的道路上设置了监测区,其中点C、D为监测点,已知点C、D、B在同一直线上,且AC⊥BC,CD=400米,tan∠ADC=2,∠ABC=35°
(1)求道路AB段的长(结果精确到1米)
(2)如果道路AB的限速为60千米/时,一辆汽车通过AB段的时间为90秒,请你判断该车是否是超速,并说明理由;参考数据:sin35°≈0.5736,cos35°≈0.8192,tan35°≈0.7002
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,抛物线过点,,与y轴交于点C,连接AC,BC,将沿BC所在的直线翻折,得到,连接OD.
(1)用含a的代数式表示点C的坐标.
(2)如图1,若点D落在抛物线的对称轴上,且在x轴上方,求抛物线的解析式.
(3)设的面积为S1,的面积为S2,若,求a的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,AB为⊙O的弦,过点O作AB的平行线,交⊙O于点C,直线OC上一点D满足∠D=∠ACB.
(1)判断直线BD与⊙O的位置关系,并证明你的结论;
(2)若⊙O的半径等于4,tan∠ACB=,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】受新型冠状病毒肺炎影响,学校开学时间延迟,为了保证学生停课不停学,某校开始实施网上教学,张老师统计了本班学生一周网上上课的时间(单位:分钟)如下:200,180,150,200,250.关于这组数据,下列说法正确的是( )
A.中位数是200B.众数是150C.平均数是190D.方差为0
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知正方形和正六边形边长均为1,如图所示,把正方形放置在正六边形外,使边与边重合,按下列步骤操作:将正方形在正六边形外绕点逆时针旋转,使边与边重合,完成第一次旋转;再绕点逆时针旋转,使边与边重合,完成第二次旋转;此时点经过路径的长为___________.若按此方式旋转,共完成六次,在这个过程中点,之间距离的最大值是______.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com