精英家教网 > 初中数学 > 题目详情
已知y-(m-3)与x(m为常数)成正比例,且当x=6时,y=1,当x=-4时,y=-4.
(1)求y与x之间的函数关系式;
(2)在直角坐标系中,画出函数图象;
(3)求函数图象与坐标轴的焦点;
(4)求y>0时的取值范围.
考点:待定系数法求一次函数解析式,一次函数的图象,一次函数图象上点的坐标特征
专题:
分析:(1)根据y+m与x+n成正比,设出解析式,将已知两对值代入计算即可确定出解析式.
(2)根据求出的函数关系式,选取两个点(0,-2)(4,0),即可画出函数的图象;
(3)由函数的图象可知图象与x轴的交点(4,0),与y轴的坐标(0,-2).
(4)令y>0,即可求得x的取值范围;
解答:解:(1)根据题意设y-(m-3)=kx,
将x=6时,y=1;x=-4时,y=-4分别代入得:
1-(m-3)=6k
-4-(m-3)=-4k

解得:k=
1
2
,m=1
则y-(1-3)=
1
2
x,即y=
1
2
x-2.
(2)如图所示:

(3)由函数的图象可知图象与x轴的交点(4,0),与y轴的坐标(0,-2).
(4)由函数的图象可知:当x>4时,y>0.
点评:此题考查了待定系数法求一次函数解析式,熟练掌握待定系数法是解本题的关键,同学们要能将函数的图象和解析式联系起来,熟练解题.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

如图所示,已知一个正方体的表面积为12.
(1)求正方体的棱长;
(2)一只蚂蚁从正方体表面A处爬到C1处,求蚂蚁爬行的最短的路线长.

查看答案和解析>>

科目:初中数学 来源: 题型:

如图,AD是△ABC的边BC上的中线,AB=BC,且AD把△ABC的周长分成3和4的两部分,求AC边的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知方程
6x
2x-1
=
k
2x-1
+2k
有增根,求k的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知kx-m=(2k-1)x+4是关于x的一元一次方程,当k,m为何值时:
(1)方程只有一个解;
(2)方程无解;
(3)方程有无数个解.

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程组:
x
35
-y=2
x
50
+1=y

查看答案和解析>>

科目:初中数学 来源: 题型:

在△ABC中,已知∠A、∠B、∠C的对边a、b、c满足a+c=2b,且∠C=2∠A,求sinA的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

已知关于x的方程x2+(2m-1)x+2m=0有两个实数根x1、x2,求m的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

解方程:(x-4)(x-2)(x+1)(x+3)+24=0.

查看答案和解析>>

同步练习册答案