【题目】定义:顶点、开口大小相同,开口方向相反的两个二次函数互为“反簇二次函数”.
(1)已知二次函数y=﹣(x﹣2)2+3,则它的“反簇二次函数”是__________________;
(2)已知关于x的二次函数y1=2x2﹣2mx+m+1和y2=ax2+bx+c,其中y1的图像经过点(1,1).若y1+y2与y1互为“反簇二次函数”.求函数y2的表达式,并直接写出当0≤x≤3时,y2的最小值.
【答案】(1)、y=(x﹣2)2+3;(2)、-16.
【解析】分析:(1)、根据“反簇二次函数”的定义得出答案;(2)、根据y1的图像经过点A(1,1)求出m的值,然后得出y1+y2的函数解析式,根据“反簇二次函数”的定义得出a、b、c的值,从而得出y2的函数解析式,根据二次函数的性质得出最小值.
详解:(1)y=(x﹣2)2+3
(2)∵y1的图像经过点A(1,1), ∴2﹣2m+m+2=2. 解得m=2.
∴y1=2x2﹣4x+3=2(x﹣1)2+1. ∴y1+y2=2x2﹣4x+3+ax2+bx+c=(a+2)x2+(b﹣4)x+c+3,
∵y1+y2与y1为“反簇二次函数”, ∴y1+y2=-2(x﹣1)2+1=﹣2x2+4x﹣1,
∴解得:. ∴函数y2的表达式为:y2=﹣4x2+8x﹣4.
当0≤x≤3时,y2的最小值为﹣16.
科目:初中数学 来源: 题型:
【题目】端午节期间,某品牌粽子经销商销售甲、乙两种不同味道的粽子,已知一个甲种粽子和一个乙种粽子的进价之和为10元,每个甲种粽子的利润是4元,每个乙种粽子的售价比其进价的2倍少1元,小王同学买4个甲种粽子和3个乙种粽子一共用了61元.
(1)甲、乙两种粽子的进价分别是多少元?
(2)在(1)的前提下,经销商统计发现:平均每天可售出甲种粽子200个和乙种粽子150个.如果将两种粽子的售价各提高1元,则每天将少售出50个甲种粽子和40个乙种粽子.为使每天获取的利润更多,经销商决定把两种粽子的价格都提高x元.在不考虑其他因素的条件下,当x为多少元时,才能使该经销商每天销售甲、乙两种粽子获取的利润为1190元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“端午节”是我国的传统佳节,民间历来有吃“粽子”的习俗. 我市某食品厂为了解市民对去年销量较好的肉馅粽、豆沙馅粽、红枣馅粽、蛋黄馅粽(以下分别用A、B、C、D表示)这四种不同口味粽子的喜爱情况,在节前对某居民区市民进行了抽样调查,并将调查情况绘制成如下两幅统计图(尚不完整). 请根据以上信息回答:
(1)本次参加抽样调查的居民有多少人?
(2)将两幅不完整的图补充完整;
(3)若居民区有8000人,请估计爱吃D粽的人数;
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在如图直角坐标系内,四边形AOBC是边长为2的菱形,E为边OB的中点,连结AE与对角线OC交于点D,且∠BCO=∠EAO,则点D坐标为( )
A. (,) B. (1,) C. (,) D. (1,)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某次大型活动,组委会启用无人机航拍活动过程,在操控无人机时应根据现场状况调节高度,已知无人机在上升和下降过程中速度相同,设无人机的飞行高度为y(米),操控无人机的时间为x(分),y与x之间的函数图像如图所示.
(1)无人机的速度为________米/分;
(2)求线段BC所表示的y与x之间函数表达式;
(3)无人机在50米上空持续飞行时间为_________分.(直接填结果)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某市从年月日开始实施阶梯电价制,居民生活用电价格方案如下:
档次 | 月用电量 | 电价 (单位:元度) | |
春秋季(,,,,,月) | 冬夏季(,,,,,月) | ||
第档 | 不超过度的部分 | 不超过度的部分 | |
第档 | 超过度但不超过度的部分 | 超过度但不超过度的部分 | |
第档 | 超过度的部分 | 超过度的部分 |
例:若某用户年月的用电量为度,则需交电费为:
(元).
(1)若小辰家年月的用电量为度,则需交电费多少元?
(2)若小辰家年月和月用电量相同,共交电费元,问小辰家月份用多少度电?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】《数》是中国数学史上的重要著作,比我们熟知的汉代《九章算术》还要古老,保存了许多古代算法的最早例证(比如“勾股”概念),改变了我们对周秦数学发展水平的认识.文中记载“有妇三人,长者一日织五十尺,中者二日织五十尺,少者三日织五十尺,今威有功五十尺,问各受几何?”译文:“三位女人善织布,姥姥1天织布50尺,妈妈2天织布50尺,妞妞3天织布50尺.如今三人齐上阵,共同完成50尺织布任务,请问每人织布几尺?”设三人一共用了x天完成织布任务,则可列方程为________________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们给出如下定义:顺次连接任意一个四边形各边中点所得的四边形叫中点四边形.
(1)如图1,四边形ABCD中,点E,F,G,H分别为边AB,BC,CD,DA的中点.求证:中点四边形EFGH是平行四边形;
(2)如图2,点P是四边形ABCD内一点,且满足PA=PB,PC=PD,∠APB=∠CPD,点E,F,G,H分别为边AB,BC,CD,DA的中点,猜想中点四边形EFGH的形状,并证明你的猜想;
(3)若改变(2)中的条件,使∠APB=∠CPD=90°,其他条件不变,直接写出中点四边形EFGH的形状.(不必证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】分类讨论是一种非常重要的数学方法,如果一道题提供的已知条件中包含几种情况,我们可以分情况讨论来求解.例如:若|x|=2,|y|=3求x+y的值.
情况①若x=2,y=3时,x+y=5
情况②若x=2,y=﹣3时,x+y=﹣1
情况③若x=﹣2,y=3时,x+y=1
情况④若x=﹣2,y=﹣3时,x+y=﹣5
所以,x+y的值为1,﹣1,5,﹣5.
几何的学习过程中也有类似的情况:
问题(1):已知点A,B,C在一条直线上,若AB=8,BC=3,则AC长为多少?
通过分析我们发现,满足题意的情况有两种
情况①当点C在点B的右侧时,如图1,此时,AC=
情况②当点C在点B的左侧时,如图2,此时,AC=
通过以上问题,我们发现,借助画图可以帮助我们更好的进行分类.
问题(2):如图3,数轴上点A和点B表示的数分别是﹣1和2,点C是数轴上一点,且BC=2AB,则点C表示的数是多少?
仿照问题1,画出图形,结合图形写出分类方法和结果.
问题(3):点O是直线AB上一点,以O为端点作射线OC、OD,使∠AOC=60°,OCOD,求∠BOD的度数.画出图形,直接写出结果.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com