精英家教网 > 初中数学 > 题目详情
20.如图,将△ABC沿着过AB中点D的直线折叠,使点A落在BC边上的A1处,称为第1次操作,折痕DE到BC的距离记为h1;还原纸片后,再将△ADE沿着过AD中点D1的直线折叠,使点A落在DE边上的A2处,称为第2次操作,折痕D1E1到BC的距离记为h2;按上述方法不断操作下去…,经过第2016次操作后得到的折痕D2015E2015到BC的距离记为h2016,到BC的距离记为h2016.若h1=1,则h2016的值为(  )
A.$\frac{1}{{2}^{2016}}$B.1-$\frac{1}{{2}^{2016}}$C.$\frac{1}{{2}^{2015}}$D.2-$\frac{1}{{2}^{2015}}$

分析 根据中点的性质及折叠的性质可得DA=DA'=DB,从而可得∠ADA'=2∠B,结合折叠的性质可得∠ADA'=2∠ADE,可得∠ADE=∠B,继而判断DE∥BC,得出DE是△ABC的中位线,证得AA1⊥BC,得到AA1=2,求出h1=2-1=1,同理h2=2-$\frac{1}{2}$,h3=2-$\frac{1}{2}$×$\frac{1}{2}$=2-$\frac{1}{{2}^{2}}$,于是经过第n次操作后得到的折痕Dn-1En-1到BC的距离hn=2-$\frac{1}{{2}^{n-1}}$,求得结果h2016=2-$\frac{1}{{2}^{2015}}$.

解答 解:连接AA1

由折叠的性质可得:AA1⊥DE,DA=DA1
又∵D是AB中点,
∴DA=DB,
∴DB=DA1
∴∠BA1D=∠B,
∴∠ADA1=2∠B,
又∵∠ADA1=2∠ADE,
∴∠ADE=∠B,
∴DE∥BC,
∴AA1⊥BC,
∴AA1=2,
∴h1=2-1=1,
同理,h2=2-$\frac{1}{2}$,h3=2-$\frac{1}{2}$×$\frac{1}{2}$=2-$\frac{1}{{2}^{2}}$

∴经过第n次操作后得到的折痕Dn-1En-1到BC的距离hn=2-$\frac{1}{{2}^{n-1}}$.
∴h2016=2-$\frac{1}{{2}^{2015}}$.
故选:D.

点评 本题考查了相似三角形的判定和性质,三角形中位线的性质,平行线等分线段定理,找出规律是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

4.下列等式成立的是(  )
A.$\sqrt{3^2}=±3$B.$\sqrt{{{17}^2}-{8^2}}=9$C.${(\sqrt{-7})^2}=7$D.$\sqrt{{{(-7)}^2}}=7$

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.已知下列各式:$\sqrt{{x}^{2}+1}$;$\sqrt{b-2}$(b>0);$\sqrt{-(x-1)^{2}}$;$\sqrt{(-2)^{2}}$;$\sqrt{(x+1)^{2}}$,其中必为二次根式的有(  )
A.2个B.3个C.4个D.5个

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

8.如图,AB=CD,BC=AD,求证:∠BAO=∠DCO.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

15.当a=2015,b=2014时,求5(a2b-3ab2)-2(a2b-7ab2)-(3a2b-ab2)的值.
对于此题,四位同学展开讨论.
小亮:这么大的数,没法算.
小刚:先去括号,合并同类项,化简后再代值,就简单了.
小龙:这个算式的结果是个常数.
小颖:这个算式的结果与a、b取值无关.
那么他们到底谁说的对?你能说明理由吗?

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

5.计算:0.25×(-$\frac{1}{2}$)-2+($\sqrt{3}$-π)0+($\sqrt{3}$)2

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

12.已知a-b=4,ab=3,求a3b-2a2b2+ab3的值.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.如图.在大圆中有一个小圆O.用尺规作图确定大圆的圆心;并作直线1,使其将两圆的面积平均二等分.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.如图,⊙O的直径为8cm,∠B=30°,∠ACB的平分线交⊙O于D,连接AD.
(1)求BC的长;
(2)求∠CAD的度数.

查看答案和解析>>

同步练习册答案