【题目】如图,等边三角形ABC的边长为6,点E为AC边上一点,AE=2,作DE⊥AC于点E交AB于点D,点F在BC边上且BF=BD.连接EF与CD交于点H,则DH的长为( )
A.B. C. D.
【答案】B
【解析】
根据等边三角形的性质可得∠B=∠A=60°,根据DE⊥AC,BF=BD可得∠AED=90°,根据勾股定理可得EF=4,DC=,再利用三角形相似求出CH,即可得到结果;
∵等边三角形ABC的边长为6,DE⊥AC;
∴∠B=∠A=∠C=60°, ∠AED=90°.
∴∠ADE=30°,
∴在Rt△ADE中,
AD=2AE=4,DE=,
又∵BF=BD,
∴BD=DF=BF=6-4=2.
∴EC=CF =4,△EFC为等边三角形,
∴EF=EC=4,∠EFC=60°=∠B,
∴AB∥EF,
∴∠DEH=∠ADE=30°,可得到∠DEC=90°.
∴,
∵AB∥EF,
∴△CEH∽△CAD,
∴
∴,
∴DH=DC-CH=.
故选B.
科目:初中数学 来源: 题型:
【题目】如图,某市有一块长为米,宽为米的长方形地块,规划部门计划将阴影部分进行绿化,中间将修建一座雕像,左右两边修两条宽为米的道路.().
(1)①试用含的代数式表示绿化的面积是多少平方米?
②假设阴影部分可以拼成一个矩形.请你求出所拼矩形相邻两边的长:如果要使所拼矩形面积最大,求与满足的关系式;
(2)若,请求出绿化面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】市少年宫为小学生开设了绘画、音乐、舞蹈和跆拳道四类兴趣班,为了解学生对这四类兴趣班的喜爱情况,对学生进行了随机问卷调查(问卷调查表如图所示),将调查结果整理后绘制了一幅不完整的统计表
兴趣班 | 频数 | 频率 |
合计 |
请你根据统计表中提供的信息回答下列问题:
(1)统计表中的_____, ;
(2)根据调查结果,请你估计该市名小学生中最喜欢“绘画”兴趣班的人数;
(3)王强和李昊选择参加兴趣班,若王强从三类兴趣班中随机选取一类,李吴从三类兴趣班中随机选取一类,请用画树状图或列表格的方法,求两人恰好选中同一类兴趣班的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】早在古罗马时代,传说亚历山大城有一位精通数学和物理的学者,名叫海伦.一天,一位罗马将军专程去拜访他,向他请教一个百思不得其解的问题.
将军每天从军营A出发,先到河边饮马,然后再去河岸同侧的军营B开会,应该怎样走才能使路程最短?这个问题的答案并不难,据说海伦略加思索就解决了它.从此以后,这个被称为“将军饮马”的问题便流传至今.大数学家海伦曾用轴对称的方法巧妙地解决了这个问题.
如图2,作B关于直线l的对称点B′,连结AB′与直线l交于点C,点C就是所求的位置.
证明:如图3,在直线l上另取任一点C′,连结AC′,BC′,B′C′,
∵直线l是点B,B′的对称轴,点C,C′在l上,
∴CB=CB′,C′B=C′B′,
∴AC+CB=AC+ = .
在△AC′B′中,
∵AB′<AC′+C′B′
∴AC+CB<AC′+C′B′即AC+CB最小.
本问题实际上是利用轴对称变换的思想,把A,B在直线同侧的问题转化为在直线的两侧,从而可利用“两点之间线段最短”,即“三角形两边之和大于第三边”的问题加以解决(其中C在AB′与l的交点上,即A、C、B′三点共线).本问题可归纳为“求定直线上一动点与直线外两定点的距离和的最小值”的问题的数学模型.
1.简单应用
(1)如图4,在等边△ABC中,AB=6,AD⊥BC,E是AC的中点,M是AD上的一点,求EM+MC的最小值
借助上面的模型,由等边三角形的轴对称性可知,B与C关于直线AD对称,连结BM,EM+MC的最小值就是线段 的长度,则EM+MC的最小值是 ;
(2)如图5,在四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M、N当△AMN周长最小时,∠AMN+∠ANM= °.
2.拓展应用
如图6,是一个港湾,港湾两岸有A、B两个码头,∠AOB=30°,OA=1千米,OB=2千米,现有一艘货船从码头A出发,根据计划,货船应先停靠OB岸C处装货,再停靠OA岸D处装货,最后到达码头B.怎样安排两岸的装货地点,使货船行驶的水路最短?请画出最短路线并求出最短路程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】六一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.
求A、B两种品牌服装每套进价分别为多少元?
该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】求证:对角线互相垂直圆内接四边形,自对角线的交点向一边作垂线,其延长线必平分对边.
要求:(1)在给出的圆内接四边形作出PE⊥BC于点E,并延长EP与AD交于点F,不写作法,保留作图痕迹
(2)利用(1)中所作的图形写出已知、求证和证明过程.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】自从开展“线上学习”活动后,某中学体育老师为了解该校九年级一班学生在家进行体育锻炼情况.决定开设:毽子;:篮球;:跑步;:跳绳四种活动项目,为了解学生最喜欢哪一种活动项目,进行随机电话访谈部分学生,并将调查结果绘制成如下统计图,请结合图中信息解答下列问题:
(1)该校本次调查中,共调查了多少名学生?
(2)请将两个统计图补充完整;
(3)在本次调查的学生中随机抽取1人,则这个人喜欢“跳绳”的概率有多大?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】下面是十堰市的三个旅游景点:丹江口的武当山、房县的野人洞、郧西县的五龙河的部分门票价格表.某单位在国庆长假前期给每人购买了一张门票,现将购买门票的情况绘制成如图所示的柱状统计图.
景点 | 标价(元/张) |
武当山 | 200 |
野人洞 | |
五龙河 | 80 |
请依据上表、图回答下列问题:
(1)去武当山旅游的门票有________张,购买去野人洞旅游的门票占所有门票张数的____________.
(2)若该单位采取随机抽取的方式把门票分配给员工,在看不到门票的前提下,每人抽取一张(所有门票形状、大小、颜色等完全相同且充分洗匀).问员工小红抽取去武当山的门票的概率是___________.
(3)若购买去五龙河的总款数占全部款数的.试求出每张野人洞门票的价格.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“孝敬”、“勤劳”是中华民族的传统美德,疫情期间同学们在家里经常帮助父母做一些力所能及的家务.学校随机调查了部分同学疫情期间在家做家务的总时间,设被调查的每位同学疫情期间在家做家务的总时间为小时,现将做家务的总时间分为五个类别:,,,,.并将调查结果绘制成如下两幅不完整的统计图:
请你根据统计图中提供的信息回答下列问题:
(1)本次共调查了多少名学生?
(2)通过计算补全条形统计图;
(3)若该校共有1000名学生,请你估计该校疫情期间在家做家务的总时间不低于20小时的学生有多少名.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com