分析 作直径CM,连接MB、MA,做OF⊥BC于F,推出∠MAC=∠MBC=90°,求出平行四边形MBHA,求出BM,求出OF,根据垂径定理求出CF,根据勾股定理求出OC即可.
解答
解:作直径CM,连接MB、MA,作OF⊥BC于F,
∵CM为直径,
∴∠MBC=∠MAC=90°,
又∵∠ADC=∠BEC=90°
∴∠MBC=∠ADC,∠MAC=∠BEC,
∴MB∥AD,MA∥BE,
∴四边形MBHA为平行四边形,
∴MB=AH=4,
又∵OF⊥BC,OF过O,
∴根据垂径定理:CF=FB=$\frac{1}{2}$BC=3;
又∵CO=OM,
∴OF=$\frac{1}{2}$MB=2,
∴在Rt△COF中,OC2=OF2+CF2=22+32=13,
∴OC=$\sqrt{13}$.
故答案为:$\sqrt{13}$.
点评 本题考查的是平行四边形的判定与性质,涉及到圆周角定理,勾股定理,垂径定理,平行四边形的性质和判定等知识点的综合应用.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{2}+1}{2}$ | B. | $\frac{\sqrt{2}-1}{2}$ | C. | $\frac{3+2\sqrt{3}}{6}$ | D. | $\frac{3-2\sqrt{3}}{6}$ |
查看答案和解析>>
科目:初中数学 来源: 题型:选择题
| A. | 一定有一个内角为60° | B. | 一定有一个内角为45° | ||
| C. | 一定是直角三角形 | D. | 一定是钝角三角形 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com