精英家教网 > 初中数学 > 题目详情

【题目】如图,⊙O为△ABC的内切圆,DEF分别为切点,已知∠C90°,⊙O半径长为1cmBC3cm,则AD长度为__cm

【答案】3

【解析】

如图,连接ODOEOF,由切线的性质和切线长定理可得ODABOEBCOFACAF=ADBE=BD,接着证明四边形OECF为正方形,则CE=OE=CF=OF=1cm,所以BE=BD=2cm,由勾股定理可求AD的长.

解:如图,连接OEOFOD

∵⊙O△ABC内切圆,与三边分别相切于DEF

∴OD⊥ABOE⊥BCOF⊥ACAFADBEBD

四边形OECF为矩形

OFOE

四边形OECF为正方形,

∴CEOECFOF1cm

∴BEBD2cm

∵AC2+BC2AB2

AD+12+9=(AD+22

∴AD3cm

故答案为:3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列事件是必然事件的是(

A.抛掷一枚硬币四次,有两次正面朝上B.射击运动员射击一次,命中十环

C.打开电视频道,正在播放《奔跑吧,兄弟》D.方程必有实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线yx+3分别与x轴,y轴交于点A、点B,抛物线y=x2+2x2y轴交于点C,点E在抛物线y=x2+2x2的对称轴上移动,点F在直线AB上移动,CE+EF的最小值是(  )

A.4B.4.6C.5.2D.5.6

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB为⊙O的直径,C为⊙O上一点,AD和过点C的切线互相垂直,垂足为D,AB,DC的延长线交于点E.

(1)求证:AC平分∠DAB;

(2)BE=3,CE=3,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】怡然美食店的AB两种菜品,每份成本均为14元,售价分别为20元、18元,这两种菜品每天的营业额共为1120元,总利润为280元.

1)该店每天卖出这两种菜品共多少份?

2)该店为了增加利润,准备降低A种菜品的售价,同时提高B种菜品的售价,售卖时发现,A种菜品售价每降0.5元可多卖1份;B种菜品售价每提高0.5元就少卖1份,如果这两种菜品每天销售总份数不变,那么这两种菜品一天的总利润最多是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1AB为⊙O的直径,点C为⊙O上一点,CD平分∠ACB交⊙O于点D,交AB于点E

1)求证:△ABD为等腰直角三角形;

2)如图2ED绕点D顺时针旋转90°,得到DE′,连接BE′,证明:BE′为⊙O的切线;

3)如图3,点F为弧BD的中点,连接AF,交BD于点G,若DF1,求AG的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,A08),B40),直线y=﹣x沿x轴作平移运动,平移时交OAD,交OBC

1)当直线y=﹣x从点O出发以1单位长度/s的速度匀速沿x轴正方向平移,平移到达点B时结束运动,过点DDEy轴交AB于点E,连接CE,设运动时间为ts).

①是否存在t值,使得CDE是以CD为腰的等腰三角形?如果能,请直接写出相应的t值;如果不能,请说明理由.

②将CDE沿DE翻折后得到FDE,设EDFADE重叠部分的面积为y(单位长度的平方).求y关于t的函数关系式及相应的t的取值范围;

2)若点MAB的中点,将MC绕点M顺时针旋转90°得到MN,连接AN,请直接写出AN+MN的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线yax2+bx+3x轴交于A(﹣30),Bl0)两点,与y轴交于点C

1)求抛物线的解析式;

2)点P是抛物线上的动点,且满足SPAO2SPCO,求出P点的坐标;

3)连接BC,点Ex轴一动点,点F是抛物线上一动点,若以BCEF为顶点的四边形是平行四边形时,请直接写出点F的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在RtABC中,ABC=90°AB=4BC=2.点P从点A出发,以每秒个单位长度的速度向终点C运动,点Q从点B出发,以每秒2个单位长度的速度向终点A运动,连接PQ,将线段PQ绕点Q顺时针旋转90°得到线段QE,以PQQE为边作正方形PQEF.设点P运动的时间为t秒(t0

1)点P到边AB的距离为______(用含t的代数式表示)

2)当PQBC时,求t的值

3)连接BE,设BEQ的面积为S,求St之间的函数关系式

4)当EF两点中只有一个点在ABC的内部时,直接写出t的取值范围

查看答案和解析>>

同步练习册答案