【题目】在中,点在上, 是中点,则___________.
【答案】
【解析】
如图,延长CE至F,使得EF=CE,交AB于点G,通过“边角边”证明△BEF≌△DEC,则∠F=∠DCE,BF=DC,根据题意与三角形的外角性质可得∠AGC=∠DCE,进而可得AG=AC,BF=BG=CD,设BF=BG=CD=x,根据题意得到关于x的方程,然后求解方程即可.
如图,延长CE至F,使得EF=CE,交AB于点G,
∵E是BD的中点,
∴BE=DE,
在△BEF与△DEC中,
,
∴△BEF≌△DEC(SAS),
∴∠F=∠DCE,BF=DC,
∵,
∴∠DCE=∠ACB﹣∠BCE=,
∵∠AGC=,
∴∠AGC=∠DCE,
∴∠F=∠DCE=∠AGC=∠BGF,AG=AC,
∴BF=BG=CD,
设BF=BG=CD=x,
∵,
∴,
解得x=2,
则CD=2.
故答案为:2.
科目:初中数学 来源: 题型:
【题目】某区统计了有扶贫任务的人员一个月下乡扶贫的天数(为整数),并制成了如下尚不完整的表格与条形统计图(如图).
(1)有扶贫任务的人员的总人数是__________,并补全条形统计图;
(2)上级部门随机抽查1名扶贫人员,检查其工作情况,求抽查到的扶贫人员的扶贫天数大于7天的概率;
(3)若统计时漏掉1名扶贫人员,现将他的下乡天数和原统计的下乡天数合并成一组新数据后,发现平均数增大了,则漏掉的这名扶贫人员下乡的天数最少是多少天.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线l:y=x与反比例函数y=(x>0)的图象交于点A(2,a).
(1)求a,k的值;
(2)横,纵坐标都是整数的点叫做整点.点P(m,n)为射线OA上一点,过点P作x轴,y轴的垂线,分别交函数y=(x>0)的图象于点B,C.由线段PB,PC和函数y=(x>0)的图象在点B,C之间的部分所围成的区域(不含边界)记为W.
①若PA=OA,求区域W内的整点个数;
②若区域W内恰有5个整点,结合函数图象,直接写出m的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,D为⊙O上一点,点C在直径BA的延长线上,且∠CDA=∠CBD.
(1)求证:CD是⊙O的切线;
(2)若BC=6,tan∠CDA=,求CD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】抛物线与轴交于点,交轴于点的长为.
(1)求抛物线的解析式;
(2)点是第一象限抛物线上的一点,直线交轴于,设点的横坐标为的长为,用含的式子表示;
(3)在的条件下,过点作交轴于点,点在上,连接交抛物线于点,点在轴上,,连接,求点的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】五张完全相同的卡片的正面分别画有等边三角形、平行四边形、矩形、菱形、正方形,将其背面朝上放在桌面上,从中随机抽取一张,所抽取的卡片上的图形既是轴对称图形,又是中心对称图形的概率是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形OABC中,.OA=OC, BA=BC.以O为圆心,以OA为半径作☉O
(1)求证:BC是☉O的切线:
(2)连接BO并延长交⊙O于点D,延长AO交⊙O于点E,与此的延长线交于点F若.
①补全图形;
②求证:OF=OB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程ax2+2x﹣3=0有两个不相等的实数根.
(1)求a的取值范围;
(2)若此方程的一个实数根为1,求a的值及方程的另一个实数根.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com