【题目】某日上午7:00,一列火车在A城的正北24km处,以12km/h的速度驶向A城.同时,一辆汽车在A城的正东12km处,以12km/h的速度驶向正西方向行驶.假设火车和汽车的行驶的方向和速度都保持不变.
问:(1)何时火车与汽车之间的距离最近?最近距离是多少千米?
(2)当火车与汽车之间的距离最近时,汽车是否已过铁路与公路的立交处?
【答案】(1)当经过小时时火车与汽车之间的距离最近,最近距离是6千米;(2)当经过小时时汽车与火车的距离最近,此时汽车已过铁路与公路的交叉口.
【解析】
(1)画出示意图,利用勾股定理表示出两车的距离,利用配方法求出两车的距离最小值;
(2)计算出汽车行走路程与12km比较,可判断是否已过交叉口.
解:(1)如图所示:
设两车经过时间为t,两车之间的距离为y,两车的行驶方向如图所示,由题意得:
AB=24﹣12t,AC=12﹣12t,
在Rt△ABC中,BC2=AB2+AC2=(24﹣12t)2+(12﹣12t)2=288(t﹣)2+72,
当t=时,BC之间的距离最小,此时BC==6km;
(2)当t=h时,汽车运动的距离为12×=18km>12km,
故已过铁路与公路的交叉口,
答:当经过小时时汽车与火车的距离最近,此时汽车已过铁路与公路的交叉口.
科目:初中数学 来源: 题型:
【题目】如图①,在三角形ABC中,∠ACB=90°,AC=6,BC=8,点D为边BC的中点,射线DE⊥BC交AB于点E.点P从点D出发,沿射线DE以每秒1个单位长度的速度运动.以PD为斜边,在射线DE的右侧作等腰直角△DPQ.设点P的运动时间为t(秒).
(1)用含t的代数式表示线段EP的长.
(2)求点Q落在边AC上时t的值.
(3)当点Q在△ABC内部时,设△PDQ和△ABC重叠部分图形的面积为S(平方单位),求S与t之间的函数关系式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如图1,A,B为直线l同侧的两点,过点A作直线l的对称点A′,连接A′B交直线于点P,连接AP,则称点P为点A,B关于直线l的“等角点”.
运用:如图2,在平面直坐标系xOy中,已知A(2,),B(﹣2,﹣)两点
(1)C(4,),D(4,),E(4,),哪个点是点A,B关于直线x=4的“等角点”;
(2)若直线l垂直于x轴,点P(m,n)是点A,B关于直线l的“等角点”,其中m>2,∠APB=α,求证:tan.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小英同时掷甲、乙两个质地均匀的骰子(6个面上分别标有1,2,3,4,5,6这6个数字).记甲朝上的一面数字为x,乙朝上的一面数字为y,这样确定点P的一个坐标(x,y),那么点P落在y=上的概率是_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示,在△ABC中,∠B=90°,AB=5cm,BC=7cm.点P从点A开始沿AB边向点B以1cm/s的速度移动,点Q从点B开始沿BC边向点C以2cm/s的速度移动,当其中一点达到终点后,另外一点也随之停止运动.
(1)如果P,Q分别从A,B同时出发,那么几秒后,△PBQ的面积等于4cm2?
(2)如果P,Q分别从A,B同时出发,那么几秒后,PQ的长度等于5cm?
(3)在(1)中,当P、Q出发几秒时,△PBQ的面积最大,最大面积是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,方格中的每个小方格都是边长为1的正方形,我们把以格点间的连线为边的三角形称为“格点三角形”,图中的△ABC是格点三角形.在建立平面直角坐标系后,点B的坐标为(-1,-1).
(1)把△ABC向左平移8格后得到△A1B1C1,画出△A1B1C1的图形并写出点B1的坐标;
(2)把△ABC绕点C按顺时针旋转90°后得△A2B2C2,画出△A2B2C2的图形并写出B2的坐标;
(3)把△ABC以点A为位似中心放大,使放大前后对应边的比为1∶2,画出△AB3C3的图形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,将正方形绕点逆时针旋转后得到正方形,依此方式,绕点连续旋转2019次得到正方形,如果点的坐标为(1,0),那么点的坐标为________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com