精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,ADBC,垂足为DADBD,点EAD上,∠CED45°

1)请写出图中相等的线段: .(不包括已知条件中的相等线段)

2)猜想BEAC的位置关系,并说明理由.

【答案】1DE=DCBE=AC;(2)互相垂直,理由见解析

【解析】

1)根据题目中的条件和图形,可以证明△BDE≌△ADC,从而可以得到对应边相等,本题得以解决;
2)根据△BDE≌△ADC和直角三角形的性质,可以得到BEAC的位置关系.

1)∵ADBC
∴∠ADB=ADC=90°
∵∠CED=45°
∴∠ECD=45°
∴∠ECD=CED
DE=DC
在△BDE和△ADC

∴△BDE≌△ADCSAS
BE=AC
由上可得,图中相等的线段:DE=DCBE=AC
故答案为:DE=DCBE=AC
2BEAC的位置关系是互相垂直,


理由:由(1)知,△BDE≌△ADC
则∠DBE=DAC
∵∠EDB=90°
∴∠DBE+DEB=90°
∵∠DEB=AEF
∴∠DBE+AEF=90°
∴∠DAC+AEF=90°
∴∠AFE=90°
BFAC
BEAC的位置关系是互相垂直.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】小飞研究二次函数y=-(x-m)2-m+1(m为常数)性质时如下结论:①这个函数图象的顶点始终在直线y=-x+1上;②存在一个m的值,使得函数图象的顶点与轴的两个交点构成等腰直角三角形;③点A(x1,y1)与点B(x2,y2)在函数图象上,若x1<x2x1+x2>2m,则y1<y2;④当-1<x<2时,yx的增大而增大,则m的取值范围为m≥2其中错误结论的序号是(

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,二次函数的图象与x轴的一个交点为B(4,0),另一个交点为A,且与y轴相交于C点

(1)求m的值及C点坐标;

(2)在直线BC上方的抛物线上是否存在一点M,使得它与B,C两点构成的三角形面积最大,若存在,求出此时M点坐标;若不存在,请简要说明理由

(3)P为抛物线上一点,它关于直线BC的对称点为Q

①当四边形PBQC为菱形时,求点P的坐标;

②点P的横坐标为t(0t4),当t为何值时,四边形PBQC的面积最大,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某市对火车站进行了大规模的改建,改建后的火车站除原有的普通售票窗口外,新增了自动打印车票的无人售票窗口.某日,从早8点开始到上午11点,每个普通售票窗口售出的车票数y1(张)与售票时间x(小时)的正比例函数关系满足图中的图象,每个无人售票窗口售出的车票数y2(张)与售票时间x(小时)的函数关系满足图中的图象.

1)图中图象的前半段(含端点)是以原点为顶点的抛物线的一部分,根据图中所给数据确定抛物线的表达式为   ,其中自变量x的取值范围是   

2)若当天共开放5个无人售票窗口,截至上午9点,两种窗口共售出的车票数不少于1450张,则至少需要开放多少个普通售票窗口?

3)上午10点时,每个普通售票窗口与每个无人售票窗口售出的车票数恰好相同,试确定图中图象的后半段一次函数的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,将点P沿着y轴翻折,得到的对应点再沿着直线l翻折得到点P1,则P1称为点Pl变换点

1)已知:点P10),直线lx2,求点Pl变换点的坐标;

2)若点Q和它的l变换点Q1的坐标分别为(21)和(32),求直线l的解析式;

3)如图,⊙O的半径为2

①若⊙O上存在点M,点Ml变换点M1在射线xx≥0)上,直线lxb,求b的取值范围;

②将⊙Ox轴上移动得到⊙E,若⊙E上存在点N,使得点Nl变换点N1y轴上,且直线l的解析式为yx+1,求E点横坐标的取值范围.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】一个寻宝游戏的寻宝通道如图①所示,通道由在同一平面内的AB,BC,CA,OA, OB,OC组成。为记录寻宝者的行进路线,在BC的中点M处放置了一台定位仪器,设寻宝者行进的时间为x,寻宝者与定位仪器之间的距离为y,若寻宝者匀速行进,且表示y与x的函数关系的图像大致如图②所示,则寻宝者的行进路线可能为:

A. A→O→B B. B→A→C C. B→O→C D. C→B→O

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在矩形ABCD中,AB4BC3.点MAB边上一点,且∠CMB45°.点Q是直线AB上一点且在点B的右侧,BQ4,点P从点Q出发,沿射线QA方向以每秒2个单位长度的速度运动,设运动时间为t秒.以P为圆心,PC长为半径作半圆P,交直线AB分别于点GH(G在点H的左侧)

1)当t1秒时,PC的长为    t    秒时,半圆PAD相切;

2)当点P与点B重合时,求半圆P被矩形ABCD的对角线AC所截得的弦长;

3)若∠MCP15°,请直接写出扇形HPC的弧长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在中,.点出发沿方向以每秒的速度向终点运动.点出发沿方向以每秒的速度向点运动、同时当点运动停止时,点随之停止运动.过点交边于点,将的中点旋转180°得到.过点交射线于点,以为边向右下方作正方形,设点的运动时间为(秒).

1)直接写出的长度(用含的代数式表示).

2)当点落在上时,求的值.

3)当正方形有重合部分时,求正方形重合图形部分的周长与时间的函数解析式.

4)当直线的某一边垂直时,直接写出的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点O为△ABC外接圆的圆心,以AB为腰作等腰△ABD,使底边AD经过点O,并分别交BC于点E、交⊙O于点F,若∠BAD30°

1)求证:BD是⊙O的切线;

2)当CA2CECB时,

①求∠ABC的度数;

的值.

查看答案和解析>>

同步练习册答案