相关习题
 0  348152  348160  348166  348170  348176  348178  348182  348188  348190  348196  348202  348206  348208  348212  348218  348220  348226  348230  348232  348236  348238  348242  348244  348246  348247  348248  348250  348251  348252  348254  348256  348260  348262  348266  348268  348272  348278  348280  348286  348290  348292  348296  348302  348308  348310  348316  348320  348322  348328  348332  348338  348346  366461 

科目: 来源: 题型:

【题目】如图直线ABCD相交于点OAOEDOF=90°,OP是∠BOC的平分线AOD=40°.

(1)求∠EOP的度数;

(2)写出∠AOD的补角和余角.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在四边形ABCD中,ABCD,1=2,DB=DC.

(1)求证:ABD≌△EDC;

(2)若∠A=135°,BDC=30°,求∠BCE的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在边长为a的正方形上剪去一个边长为b的小正方形(ab),把剩下的部分剪拼成一个梯形,分别计算这两个图形阴影部分的面积,由此可以验证的等式是( )

A. a2b2(ab)(ab) B. (ab)2a22abb2

C. (ab)2a22abb2 D. a2aba(ab)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在ABCABC中,AB=AB′,B=B,补充条件后仍不一定能保证ABC≌△ABC,则补充的这个条件是(

A. BC=BC B. A=∠A C. AC=AC D. C=∠C

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,抛物线y=ax2+b的顶点坐标为(0,﹣1),且经过点A(﹣2,0).
(1)求抛物线的解析式;
(2)若将抛物线y=ax2+b中在x轴下方的图象沿x轴翻折到x轴上方,x轴上方的图象保持不变,就得到了函数y=|ax2+b|图象上的任意一点P,直线l是经过(0,1)且平行与x轴的直线,过点P作直线l的垂线,垂足为D,猜想并探究:PO与PD的差是否为定值?如果是,请求出此定值;如果不是,请说明理由. (注:在解题过程中,如果你觉得有困难,可以阅读下面的材料)
附阅读材料:
① 在平面直角坐标系中,若A、B两点的坐标分别为A(x1 , y1),B(x2 , y2),则A,B两点间的距离为|AB|= ,这个公式叫两点间距离公式.
例如:已知A,B两点的坐标分别为(﹣1,2),(2,﹣2),则A,B两点间的距离为|AB|= =5.
② 因式分解:x4+2x2y2+y4=(x2+y22

查看答案和解析>>

科目: 来源: 题型:

【题目】张老师要从班级里数学成绩较优秀的甲、乙两位学生中选拔一人参加全国初中数学联赛 为此,他对两位同学进行了辅导,并在辅导期间测验了10次,测验成绩如下表:

1

2

3

4

5

6

7

8

9

10

68

80

78

79

78

84

81

83

77

92

86

80

75

83

79

80

85

80

77

75

利用表中数据,解答下列问题:

填空完成下表:

平均成绩

中位数

众数

80

80

80

张老师从测验成绩表中,求得甲的方差,请你计算乙10次测验成绩的方差.

请你根据上面的信息,运用所学统计知识,帮张老师选拔出参加全国数学联赛的人选,并简要说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】五一假期,成都某公司组织部分员工分别到甲、乙、丙、丁四地考察,公司按定额购买了前往各地的车票,如图是用来制作完整的车票种类和相应数量的条形统计图,根据统计图回答下列问题:

若去丙地的车票占全部车票的,则总票数为______ 张,去丁地的车票有______

若公司采用随机抽取的方式发车票,小胡先从所有的车票中随机抽取一张所有车票的形状、大小、质地完全相同、均匀,那么员工小胡抽到去甲地的车票的概率是多少?

若有一张车票,小王和小李都想要,他们决定采取掷一枚质地均匀的正方体骰子的方式来确定给谁,其上的数字是3的倍数,则给小王,否则给小李请问这个规则对双方是否公平?若公平请说明理由;若不公平,请通过计算说明对谁更有利.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB为△ABC外接圆⊙O的直径,点P是线段CA延长线上一点,点E在圆上且满足PE2=PAPC,连接CE,AE,OE,OE交CA于点D.
(1)求证:△PAE∽△PEC;
(2)求证:PE为⊙O的切线;
(3)若∠B=30°,AP= AC,求证:DO=DP.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,顶点为M的抛物线y=a(x+1)2﹣4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣3).

(1)求抛物线的函数表达式;
(2)判断△BCM是否为直角三角形,并说明理由.
(3)抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】.某区在实施居民用水额定管理前,对居民生活用水情况进行了调查,下表是通过简单随机抽样获得的50个家庭去年月平均用水量单位:吨,并将调查数据进行如下整理:

频数分布表

分组

划记

频数

正正

11

19

合计

2

50

把上面频数分布表和频数分布直方图补充完整;

从直方图中你能得到什么信息? 写出两条即可

为了鼓励节约用水,要确定一个用水量的标准,超出这个标准的部分按倍价格收费,若要使的家庭收费不受影响,你觉得家庭月均用水量应该定为多少?为什么?

查看答案和解析>>

同步练习册答案