科目: 来源: 题型:
【题目】已知二次函数y=
x2+x﹣
.
(1)用配方法将y=
x2+x﹣
化成y=a(x﹣h)2+k的形式;
(2)在平面直角坐标系中,画出这个二次函数的图象;
(3)根据图象填空:
①当x时,y随x的增大而增大;
②当﹣2<x<2时,则y的取值范围是;
③关于x的方程
x2+x﹣
=m没有实数解,则m的取值范围是 . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】平面直角坐标系中,点A的坐标是(0,3),点B在x轴上,将△AOB绕点A逆时针旋转90°得到△ACD,点O、B对应点分别是C、D. ![]()
(1)若点B的坐标是(﹣4,0),请在图中画出△ACD,并写出点C、D的坐标;
(2)当点D落在第一象限时,试写出一个符合条件的点B的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知C是线段AB的中点,D是线段BC的中点,E是线段AD的中点,F是线段AE的中点,那么线段AF与线段AC的长度比为( )
![]()
A. 1∶8 B. 1∶4 C. 3∶8 D. 3∶16
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是二次函数y=ax2+bx+c图象的一部分,图象过点A(﹣1,0),对称轴为直线x=1,给出以下结论:
①abc<0;②b2﹣4ac>0;③9a+3b+c>0;④若B(
,y1)、C(2,y2)为函数图象上的两点,则y1>y2 ,
其中正确的结论是(填写代表正确结论的序号) . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,BC=2,∠ABC=90°,∠BAC=30°,将△ABC绕点A顺时针旋转90°,得到△ADE,其中点B与点D是对应点,点C与点E是对应点,连接BD,则BD的长为 . ![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知矩形ABCD中,AB=10cm,AD=4cm,作如下折叠操作.如图1和图2所示.在边AB上取点M,在边AD或DC上取点P,连接MP,将△AMP或四边形AMPD沿着直线MP折叠到△A′MP或四边形A′MPD′,点A落点为点A′,点D落点为点D′.
探究:![]()
(1)如图1,若AM=8cm,点P在AD上,点A′落在DC上,则∠MA′C的度数为
(2)如图2,若AM=5cm,点P在DC上,点A′落在DC上.
①求证:△MA′P是等腰三角形;
②请直接写出线段DP的长是
(3)若点M固定为AB的中点,点P由A开始,沿A﹣D﹣C方向,在AD、DC边上运动,设点P的运动速度为1cm/s,运动时间为t s,按操作要求折叠:
①求:当MA′与线段DC有交点时,t的取值范围;
②直接写出当点A′到边AB 的距离最大时,t的值是
发现:若点M在线段AB上移动,点P仍为线段AD或DC上的任意点,随着点M的位置不同,按操作要求折叠后,点A的落点A′的位置会出现以下三种不同的情况:不会落在线段DC上,只有一次落在线段DC上,会有两次落在线段DC上.请直接写出点A′有两次落在线段DC上时,AM的取值范围是
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知E是平行四边形ABCD中BC边的中点,连接AE并延长AE交DC的延长线于点F.![]()
(1)求证:△ABE≌△FCE;
(2)连接AC、BF,若AE=
BC,求证:四边形ABFC为矩形;
(3)在(2)条件下,直接写出当△ABC再满足时,四边形ABFC为正方形.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图△ABC三个顶点的坐标分别为A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形网格中,每个小正方形的边长是1个单位长度. ![]()
(1)画出△ABC向上平移6个单位得到的△A1B1C1;
(2)以点C为位似中心,在网格中画出△A2B2C2 , 使△A2B2C2与△ABC位似,且△A2B2C2与△ABC的位似比为2:1,并直接写出点A2的坐标;A2().
(3)请直接写出△A2B2C2与△A1B1C1的面积比.S△A2B2C2:S△A1B1C1= .
查看答案和解析>>
科目: 来源: 题型:
【题目】学习投影后,小明、小颖利用灯光下自己的影子长度来测量一路灯的高度,并探究影子长度的变化规律.如图,在同一时间,身高为1.6m的小明(AB)的影子BC长是3m,而小颖(EH)刚好在路灯灯泡的正下方H点,并测得HB=6m.![]()
(1)请在图中画出形成影子的光线,并确定路灯灯泡所在的位置G;
(2)求路灯灯泡的垂直高度GH.
查看答案和解析>>
科目: 来源: 题型:
【题目】在一个不透明的纸箱里装有3个标号为1,2,﹣3的小球,它们的材质、形状、大小完全相同,小红从纸箱里随机取出一个小球,记下数字为x,小刚从剩下的2个小球中随机取出一个小球,记下数字为y,这样确定了点P的坐标(x,y).
(1)请你运用画树状图或列表的方法,写出点P所有可能的坐标;
(2)求点(x,y)在函数y=﹣
图象上的概率.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com