相关习题
 0  351300  351308  351314  351318  351324  351326  351330  351336  351338  351344  351350  351354  351356  351360  351366  351368  351374  351378  351380  351384  351386  351390  351392  351394  351395  351396  351398  351399  351400  351402  351404  351408  351410  351414  351416  351420  351426  351428  351434  351438  351440  351444  351450  351456  351458  351464  351468  351470  351476  351480  351486  351494  366461 

科目: 来源: 题型:

【题目】如图①,已知直线l1l2,且l3l1l2分别相交于AB两点,l4l1l2分别交于CD两点,∠ACP1BDP2CPD3

P在线段AB

(1)若∠122°233°,则∠3________

(2)试找出∠123之间的等量关系,并说明理由;

(3)应用(2)中的结论解答下列问题

如图②AB处北偏东40°的方向上,在C处的北偏西45°的方向上,求∠BAC的度数;

(4)如果点P在直线l3上且在AB两点外侧运动时,其他条件不变,试探究∠123之间的关系(PAB两点不重合),直接写出结论即可.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某小区①号楼与号楼隔河相望,李明家住在①号楼,他很想知道号楼的高度,于是他做了一些测量,他先在B点测得C点的仰角为60°,然后到42米高的楼顶A处,测得C点的仰角为30°,请你帮助李明计算号楼的高度CD.

查看答案和解析>>

科目: 来源: 题型:

【题目】某学校为了解七年级男生体质健康情况,随机抽取若干名男生进行测试,测试结果分为优秀、良好、合格、不合格四个等级,统计整理数据并绘制图1、图2两幅不完整的统计图,请根据图中信息回答下列问题:

(1)本次接收随机抽样调查的男生人数为   人,扇形统计图中“良好”所对应的圆心角的度数为   

(2)补全条形统计图中“优秀”的空缺部分;

(3)若该校七年级共有男生480人,请估计全年级男生体质健康状况达到“良好”的人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】阅读对人成长的影响是巨大的,一本好书往往能改变人的一生.如图是某校三个年级学生人数分布的扇形统计图,其中八年级学生人数为408人,下表是该校学生阅读课外书籍情况统计表.根据图表中的信息,可知该校学生平均每人读课外书的本数是(  )

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,E是ABCD的边AD的中点,连接CE并延长交BA的延长线于F,若CD=6,求BF的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】甲、乙两位采购员同去一家饲料公司购买两次饲料.两次饲料的价格有变化,两位采购员的购货方式也不同,其中,甲每次购买1000千克,乙每次用去800元,而不管购买多少饲料.

(1)甲、乙所购饲料的平均单价各是多少?

(2)谁的购货方式更合算?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,点P、Q分别是等边△ABC边AB、BC上的动点(端点除外),点P从顶点A、点Q从顶点B同时出发,且它们的运动速度相同,连接AQ、CP交于点M.

(1)求证:△ABQ≌△CAP;

(2)当点P、Q分别在AB、BC边上运动时,∠QMC变化吗?若变化,请说明理由;若不变,求出它的度数.

(3)如图2,若点P、Q在运动到终点后继续在射线AB、BC上运动,直线AQ、CP交点为M,则∠QMC变化吗?若变化,请说明理由;若不变,直接写出它的度数.

查看答案和解析>>

科目: 来源: 题型:

【题目】已知,△ABC 是等腰直角三角形,BC=AB,A 点在 x 负半轴上,直角顶点 B y 轴上,点 C x 轴上方.

(1)如图1所示,若A的坐标是(﹣3,0),点 B的坐标是(0,1),求点 C 的坐标;

(2)如图2,过点 C CDy 轴于 D,请直接写出线段OA,OD,CD之间等量关系;

(3)如图3,若 x 轴恰好平分BAC,BC x 轴交于点 E,过点 C CFx 轴于 F,问 CF AE 有怎样的数量关系?并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】计算:﹣12﹣|3﹣ |+2 sin45°﹣( ﹣1)2

查看答案和解析>>

科目: 来源: 题型:

【题目】(题文)(1)阅读理解:

如图1,在△ABC中,若AB=10,AC=6,求BC边上的中线AD的取值范围.

解决此问题可以用如下方法:延长AD到点E使DE=AD,连接BE(或将△ACD绕着点D逆时针旋转180°得到△EBD,把AB,AC,2AD集中在△ABE中.利用三角形三边的关系即可判断中线AD的取值范围是_________;

(2)问题解决:

如图2,在△ABC中,D是BC边上的中点,DE⊥DF于点D,DE交AB于点E,DF交AC于点F,连接EF,求证BE+CF>EF.

查看答案和解析>>

同步练习册答案