相关习题
 0  351395  351403  351409  351413  351419  351421  351425  351431  351433  351439  351445  351449  351451  351455  351461  351463  351469  351473  351475  351479  351481  351485  351487  351489  351490  351491  351493  351494  351495  351497  351499  351503  351505  351509  351511  351515  351521  351523  351529  351533  351535  351539  351545  351551  351553  351559  351563  351565  351571  351575  351581  351589  366461 

科目: 来源: 题型:

【题目】阅读下列解答过程:(1)如图甲,AB∥CD,探索∠P与∠A,∠C之间的关系.

(2)如图乙和图丙,AB∥CD,请根据上述方法分别探索两图中∠P与∠A,∠C之间的关系.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一次函数的图像与x轴、y轴分别交于A、B两点,且A、B的坐标分别为(4,0),(0,3).

(1)求一次函数的表达式.

(2)点C在线段OA上,沿BCOBC翻折,O点恰好落在AB上的D处,

求直线BC的表达式.

查看答案和解析>>

科目: 来源: 题型:

【题目】对于数轴上的A,B,C三点,给出如下定义:若其中一个点与其它两个点的距离恰好满足2倍的数量关系,则称该点是其它两个点的“联盟点”.

例如数轴上点A,B,C所表示的数分别为1,3,4,此时点B是点A, C的“联盟点”.

1)若点A表示数-2, 点B表示的数2,下列各数,0,4,6所对应的点分别C1C2 C3 C4,其中是点A,B的“联盟点”的是

(2)点A表示数-10, 点B表示的数30,P在为数轴上一个动点:

①若点P在点B的左侧,且点P是点A, B的“联盟点”,求此时点P表示的数;

②若点P在点B的右侧,点PA, B中,有一个点恰好是其它两个点的“联盟点”,写出此时点P表示的数 .

查看答案和解析>>

科目: 来源: 题型:

【题目】中国古代有二十四节气歌,“春雨惊春清谷天,夏满芒夏暑相连.秋处露秋寒霜降,冬雪雪冬小大寒.”它是为便于记忆我国古时历法中二十四节气而编成的小诗歌,流传至今.节气指二十四时节和气候,是中国古代订立的一种用来指导农事的补充历法,是中国古代劳动人民长期经验的积累和智慧的结晶.其中第一个字“春”是指立春,为春季的开始,但在气象学上的入春日是有严格定义的,即连续5天的日平均气温稳定超过10℃又低于22℃,才算是进入春天,其中,5天中的第一天即为入春日.例如:2014年3月13日至18日,北京的日平均气温分别为9.3℃,11.7℃,12.7℃,11.7℃,12.7℃和12.3℃,即从3月14日开始,北京日平均气温已连续5天稳定超过10℃,达到了气象学意义上的入春标准.因此可以说2014年3月14日为北京的入春日. 日平均温度是指一天24小时的平均温度.气象学上通常用一天中的2时、8时、14时、20时4个时刻的气温的平均值作为这一天的日平均气温(即4个气温相加除以4),结果保留一位小数.
如表是北京顺义2017年3月28日至4月3日的气温记录及日平均气温(单位:℃)

时间

2时

8时

14时

20时

平均气温

3月28日

6

8

13

11

9.5

3月29日

7

6

17

14

a

3月30日

7

9

15

12

10.8

3月31日

8

10

19

13

12.5

4月1日

8

7

18

15

12

4月2日

11

7

22

16

14

4月3日

13

11

21

17

15.5

根据以上材料解答下列问题:
(1)求出3月29日的日平均气温a;
(2)采用适当的统计图将这7天的日平均气温的变化情况表示出来;
(3)请指出2017年的哪一天是北京顺义在气象学意义上的入春日.

查看答案和解析>>

科目: 来源: 题型:

【题目】2018917日世界人工智能大会在上海召开,人工智能的变革力在教育、制造等领域加速落地. 在某市举办的一次中学生机器人足球赛中,有四个代表队进入决赛,决赛中,每个队分别与其它三个队进行主客场比赛各一场(即每个队要进行6场比赛),以下是积分表的一部分.

排名

代表队

场次

(场)

(场)

(场)

(场)

净胜球

(个)

进球

(个)

失球

(个)

积分

(分)

1

A

6

1

6

12

6

22

2

B

6

3

2

1

0

6

6

19

3

C

6

3

1

2

2

9

7

17

4

D

6

0

0

6

m

5

13

0

(说明:积分=胜场积分+平场积分+负场积分)

1D代表队的净胜球数m=

2)本次决赛中,胜一场积 分,平一场积 分,负一场积 分;

3)此次竞赛的奖金分配方案为:进入决赛的每支代表队都可以获得参赛奖金6000元;另外,在决赛期间,每胜一场可以再获得奖金2000元,每平一场再获得奖金1000.

请根据表格提供的信息,求出冠军A队一共能获得多少奖金.

查看答案和解析>>

科目: 来源: 题型:

【题目】填空,完成下列说理过程

如图,∠AOB90°,∠COD90°OA平分∠DOE,若∠BOC20°,求∠COE的度数

解:因为∠AOB90°

所以∠BOC+AOC90°

因为∠COD90°

所以∠AOD+AOC90°

所以∠BOC=∠AOD    

因为∠BOC20°

所以∠AOD20°

因为OA平分∠DOE

所以∠   2AOD   °    

所以∠COE=∠COD﹣∠DOE   °

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是⊙O的直径,PA切⊙O于点A,PO交⊙O于点C,连接BC,∠P=∠B.
(1)求∠P的度数;
(2)连接PB,若⊙O的半径为a,写出求△PBC面积的思路.

查看答案和解析>>

科目: 来源: 题型:

【题目】定义一种对正整数n的“C运算”:①当n为奇数时,结果为3n1;②当n为偶数时,结果为(其中k是使为奇数的正整数),并且运算重复进行.例如,n66时,其“C运算”如下

n26,则第2019次“C运算”的结果是

A. 40 B. 5 C. 4 D. 1

查看答案和解析>>

科目: 来源: 题型:

【题目】Rt△ABC中,∠C=90°,点D、E分别是△ABCAC、BC上的点,点P是一动点.∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2=   °;

(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间的关系为:   

(3)若点P运动到边AB的延长线上,如图(3)所示,则∠α、∠1、∠2之间有何关系?猜想并说明理由.

(4)若点P运动到△ABC形外,如图(4)所示,则∠α、∠1、∠2之间的关系为:  .

查看答案和解析>>

科目: 来源: 题型:

【题目】某厂计划生产A、B两种产品共50件.已知A产品每件可获利润1200元,B产品每件可获利润700元,设生产两种产品的获利总额为y(元),生产A产品x(件).

(1)写出yx之间的函数关系式;

(2)若生产A、B两种产品的件数均不少于10件,求总利润的最大值.

查看答案和解析>>

同步练习册答案