科目: 来源: 题型:
【题目】小明在学习过程中,对教材中的一个有趣问题做如下探究:
![]()
(习题回顾)已知:如图1,在△ABC中,∠ACB=90°,AE是角平分线,CD是高,AE、CD相交于点F.求证:∠CFE=∠CEF;
(变式思考)如图2,在△ABC中,∠ACB=90°,CD是AB边上的高,若△ABC的外角∠BAG的平分线交CD的延长线于点F,其反向延长线与BC边的延长线交于点E,则∠CFE与∠CEF还相等吗?说明理由;
(探究廷伸)如图3,在△ABC中,在AB上存在一点D,使得∠ACD=∠B,角平分线AE交CD于点F.△ABC的外角∠BAG的平分线所在直线MN与BC的延长线交于点M.试判断∠M与∠CFE的数量关系,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】我们定义:有一组邻边相等的凸四边形叫做“等邻边四边形”.
(1)如图①,在菱形ABCD中,∠ABC=120°,点M,N分别在AD,CD上,且∠MBN=60°,试判断四边形DMBN是否为“等邻边四边形”?请说明理由.
(2)如图②,在矩形ABCD中,AB=8,BC=12.5,点E在BC上,且BE=6,在矩形ABCD内或边上,确定一点P,使四边形ABEP为最大面积的“等邻边四边形”,若能实现,请求出最大面积;若不能实现,说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)请用两种不同的方法列代数式表示图1的面积
方法1 ,
方法2 ;
(2)若a+b=7,ab=15,根据(1)的结论求a2+b2的值;
(3)如图2,将边长为x和x+2的长方形,分成边长为x的正方形和两个宽为1的小长方形,并将这三个图形拼成图3,这时只需要补一个边长为1的正方形便可以构成一个大正方形.
①若一个长方形的面积是216,且长比宽大6,求这个长方形的宽.
②把一个长为m,宽为n的长方形(m>n)按上述操作,拼成一个在一角去掉一个小正方形的大正方形,则去掉的小正方形的边长为 .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】探究与发现:如图1所示的图形,像我们常见的学习用品﹣﹣圆规.我们不妨把这样图形叫做“规形图”.
(1)观察“规形图”,试探究∠BDC与∠A、∠B、∠C之间的关系,并说明理由;
(2)请你直接利用以上结论,解决以下三个问题:
①如图2,把一块三角尺XYZ放置在△ABC上,使三角尺的两条直角边XY、XZ恰好经过点B、C,∠A=40°,则∠ABX+∠ACX= °;
②如图3,DC平分∠ADB,EC平分∠AEB,若∠DAE=40°,∠DBE=130°,求∠DCE的度数;
③如图4,∠ABD,∠ACD的10等分线相交于点G1、G2…、G9,若∠BDC=133°,∠BG1C=70°,求∠A的度数.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,抛物线y=ax2+bx+1经过点(2,6),且与直线y=
x+1相交于A,B两点,点A在y轴上,过点B作BC⊥x轴,垂足为点C(4,0).
![]()
(1)求抛物线的解析式;
(2)若P是直线AB上方该抛物线上的一个动点,过点P作PD⊥x轴于点D,交AB于点E,求线段PE的最大值;
(3)在(2)的条件,设PC与AB相交于点Q,当线段PC与BE相互平分时,请求出点Q的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:在△ABC中,且∠BAC=70°,AD是△ABC的角平分线,点E是AC边上的一点,点F为直线AB上的一动点,连结EF,直线EF与直线AD交于点P,设∠AEF=α°
(1)如图①,若 DE//AB,则①∠ADE的度数是_______;
②当∠DPE=∠DEP时,∠AEF= _____度:当∠PDE=∠PED,∠AEF=_______度;
(2)如图②,若DE⊥AC,则是否存在这样的α的值,使得△DPE中有两个相等的角?若存在求出α的值;若不存在,说明理由
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,已知△BAD和△BCE均为等腰直角三角形,∠BAD=∠BCE=90°,点M为DE的中点.过点E与AD平行的直线交射线AM于点N.
(1)当A,B,C三点在同一直线上时(如图1),求证:M为AN的中点;
(2)将图1中△BCE绕点B旋转,当A,B,E三点在同一直线上时(如图2),求证:△CAN为等腰直角三角形;
(3)将图1中△BCE绕点B旋转到图3的位置时,(2)中的结论是否仍然成立?若成立,试证明之;若不成立,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示为一个计算程序;
![]()
(1)若输入的x=3,则输出的结果为 ;
(2)若开始输入的x为正整数,最后输出的结果为40,则满足条件的x的不同值最多有 ;
(3)规定:程序运行到“判断结果是否大于30”为一次运算.若运算进行了三次才输出,求x的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】【问题情境】
已知矩形的面积为a(a为常数,a>0),当该矩形的长为多少时,它的周长最小?最小值是多少?
【数学模型】
设该矩形的长为x,周长为y,则y与x的函数表达式为y=2(x+
)(x>0).
【探索研究】
小彬借鉴以前研究函数的经验,先探索函数y=x+
的图象性质.
(1)结合问题情境,函数y=x+
的自变量x的取值范围是x>0,下表是y与x的几组对应值.
x | … |
|
|
| 1 | 2 | 3 | m | … |
y | … | 4 | 3 | 2 | 2 | 2 | 3 | 4 | … |
①写出m的值;
②画出该函数图象,结合图象,得出当x= 时,y有最小值,y最小= ;
提示:在求二次函数y=ax2+bx+c(a≠0)的最大(小)值时,除了通过观察图象,还可以通过配方得到.试用配方法求函数y=x+
(x>0)的最小值,解决问题(2)
【解决问题】
(2)直接写出“问题情境”中问题的结论.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com