相关习题
 0  356291  356299  356305  356309  356315  356317  356321  356327  356329  356335  356341  356345  356347  356351  356357  356359  356365  356369  356371  356375  356377  356381  356383  356385  356386  356387  356389  356390  356391  356393  356395  356399  356401  356405  356407  356411  356417  356419  356425  356429  356431  356435  356441  356447  356449  356455  356459  356461  356467  356471  356477  356485  366461 

科目: 来源: 题型:

【题目】如图,将一条数轴在原点O和点B处各折一下,得到一条折线数轴.图中点A表示﹣10,点B表示10,点C表示18,我们称点A和点C在数轴上相距28个长度单位.动点P从点A出发,以2单位/秒的速度沿着折线数轴的正方向运动,从点O运动到点B期间速度变为原来的一半,之后立刻恢复原速;同时,动点Q从点C出发,以1单位/秒的速度沿着数轴的负方向运动,从点B运动到点O期间速度变为原来的两倍,之后也立刻恢复原速.设运动的时间为t秒.问:

1)动点P从点A运动至C点需要多少时间?

2PQ两点相遇时,求出相遇点M所对应的数是多少;

3)求当t为何值时,PO两点在数轴上相距的长度与QB两点在数轴上相距的长度相等.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,一个梯子AB2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了(  )米.

A. 0.5 B. 1 C. 1.5 D. 2

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在平面直角坐标系中,的顶点在第一象限,点的坐标分别为,直线轴于点,若关于点成中心对称,则点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,ΔABC中,点A的坐标为(01),点C的坐标为(43),点B的坐标为(31),如果要使ΔABDΔABC全等,求点D的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数x的所有取值的全体叫做闭区间,表示为[a,b].对于一个函数,如果它的自变量x与函数值y满足:当m≤x≤n时,有m≤y≤n,我们就称此函数是闭区间[m,n]上的“闭函数”.如函数y=﹣x+4,当x=1时,y=3;当x=3时,y=1,即当1≤x≤3时,恒有1≤y≤3,所以说函数y=﹣x+4是闭区间[1,3]上的“闭函数”,同理函数y=x也是闭区间[1,3]上的“闭函数”.

(1)反比例函数y=是闭区间[1,2018]上的“闭函数”吗?请判断并说明理由;

(2)如果已知二次函数y=x2﹣4x+k是闭区间[2,t]上的“闭函数”,求k和t的值;

3)如果(2)所述的二次函数的图象交y轴于C点,A为此二次函数图象的顶点,B为直线x=1上的一点,当ABC为直角三角形时,写出点B的坐标.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,在△ABC中,点EAB上,点DBC上,BD=BE,∠BAD=∠BCE,ADCE相交于点F,试判断△AFC的形状,并说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,矩形ABCD中,AB=4,AD=5,EBC上一点,BE:CE=3:2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点PPFBC交直线AE于点F.

(1)线段AE=   

(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;

(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径;

(4)如图2,将AEC沿直线AE翻折,得到AEC',连结AC',如果∠ABF=CBC′,求t值.(直接写出答案,不要求解答过程).

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,上午9时,一条渔船从A出发,以12海里/时的速度向正北航行,11时到达B处,从AB处望小岛C,测得∠NAC15°,∠NBC30°.若小岛周围12.3海里内有暗礁,问该渔船继续向正北航行有无触礁危险?

查看答案和解析>>

科目: 来源: 题型:

【题目】在学习了数轴后,小亮决定对数轴进行变化应用:

1)应用一:已知点在数轴上表示为-2,数轴上任意一点表示的数为,则两点的距离可以表示为 ;应用这个知识,请写出当 时, 有最小值为

2)应用二:从数轴上取下一个单位长度的线段,第一次剪掉原长的,第二次剪掉剩下的,依此类推,每次都剪掉剩下的,则剪掉4次后剩下线段长度为 ;应用这个原理,请计算:

3)应用三:如图,将一根拉直的细线看作数轴,一个三边长分别为的三角形的顶点与原点重合,边在数轴正半轴上,将数轴正半轴的线沿的顺序依次缠绕在三角形的边上,负半轴的线沿的顺序依次缠绕在三角形的边上.

①如果正半轴的线缠绕了3圈,负半轴的线缠绕了5圈,求绕在点上的所有数之和;

②如果正半轴的线不变,将负半轴的线拉长一倍,即原线上的点-2的位置对应着拉长后的数-1,并将三角形向正半轴平移一个单位后再开始绕,求绕在点且绝对值不超过60的所有数之和.

查看答案和解析>>

科目: 来源: 题型:

【题目】下列说法中不正确的是(

A. 等边三角形是轴对称图形

B. 若两个图形的对应点连线都被同一条直线垂直平分,则这两个图形关于这条直线对称

C. ABC≌△ ,则这两个三角形一定关于一条直线对称

D. 直线MN是线段AB的垂直平分线,若P点使PAPB,则点PMN上,若,则不在MN

查看答案和解析>>

同步练习册答案