科目: 来源: 题型:
【题目】如图,∠ADE+∠BCF=180°,BE平分∠ABC,∠ABC=2∠E.
(1)AD与BC平行吗?请说明理由;
(2)AB与EF的位置关系如何?为什么?
(3)若AF平分∠BAD,试说明:
①∠BAD=2∠F;②∠E+∠F=90°
注:本题第(1)、(2)小题在下面的解答过程的空格内填写理由或数学式;第(3)小题要写出解题过程.
解:(1)AD∥BC.理由如下:
∵∠ADE+∠ADF=180°,(平角的定义)
∠ADE+∠BCF=180°,(已知)
∴∠ADF=∠________,(________)
∴AD∥BC
(2)AB与EF的位置关系是:________.
∵BE平分∠ABC,(已知)
∴∠ABE=∠ABC.(角平分线的定义)
又∵∠ABC=2∠E,(已知),
即∠E=∠ABC,
∴∠E=∠________.(________)
∴________∥________.(________)
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在Rt△ABC中,∠C=90°,∠ABC=30°,点D是BC边上的点,CD=1,将△ACD沿直线AD翻折,使点C落在AB边上的点E处,若点P是直线AD上的动点,则PB+PE的最小值是________.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,已知∠ABC=90°,D是直线AB上的点,AD=BC.
(1)如图1,过点A作AF⊥AB,截取AF=BD,连接DC、DF、CF,判断△CDF的形状并证明;
(2)如图2,E是直线BC上一点,且CE=BD,直线AE、CD相交于点P,∠APD的度数是一个固定的值吗?若是,请求出它的度数;若不是,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】中央电视台的《朗读者》节目激发了同学们的读书热情,为了引导学生“多读书,读好书”,某校对八年级部分学生的课外阅读量进行了随机调查,整理调查结果发现,学生课外阅读的本数量少的有本,最多的有本,并根据调查结果绘制了不完整的图表,如下所示:
本数(本) | 频数(人数) | 频率 |
合计 |
()统计图表中的__________,__________,__________.
()请将频数分布直方图补充完整.
()求所有被调查学生课外阅读的平均本数.
()若该校八年级共有名学生,请你估计该校八年级学生课外阅读本及以上的人数.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线与x轴交于点A,与双曲线的一个交点为B(-1,4).
(1)求直线与双曲线的表达式;
(2)过点B作BC⊥x轴于点C,若点P在双曲线上,且△PAC的面积为4,求点P的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面内,两条直线L1,L2相交于点O,对于平面内任意一点M,若p,q分别是点M到直线L1,L2的距离,则称(p,q)为点M的“距离坐标”.根据上述规定,“距离坐标”是(2,1)的点共有_____个
查看答案和解析>>
科目: 来源: 题型:
【题目】在街头巷尾会遇到一类“摸球游戏”,摊主把分别标有数字1,2,3的3个白球和标有数字4,5,6的3个黑球放在口袋里球除颜色外,其他均相同,让你摸球规定:每付3元钱就玩一局,每局连续摸两次,每次只能摸一个,第一次摸完后把球放回口袋里搅匀后再摸一次,若前后两次摸得的都是白球,摊主就送你10元钱的奖品.
用列表法或树状图表示摸出的两个球可能出现的所有结果;
求获奖的概率.
查看答案和解析>>
科目: 来源: 题型:
【题目】下列命题中是真命题的是( )
A. 有两边和其中一边的对角对应相等的两个三角形全等
B. 两条平行直线被第三条直线所截,则一组同旁内角的平分线互相垂直
C. 三角形的一个外角等于两个内角的和
D. 等边三角形既是中心对称图形,又是轴对称图形
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AB=18,cosB=,把△ABC绕着点C旋转,使点B与AB边上的点D重合,点A落在点E处,则线段AE的长为( )
A. 6 B. 7 C. 8 D. 9
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com