科目: 来源: 题型:
【题目】如图,中,,现有两点M、N分别从点A、点B同时出发,沿三角形的边运动,已知点M的速度为每秒1个单位长度,点N的运度为每秒2个单位长度当点M第一次到达B点时,M、N同时停止运动.
点M、N运动几秒后,M、N两点重合?
点M、N运动几秒后,可得到等边三角形?
当点M、N在BC边上运动时,能否得到以MN为底边的等腰?如存在,请求出此时M、N运动的时间.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数y=ax+b(a≠0)的图象与反比例函数y= (k≠0)的图象交于第二、四象限内的A、B两点,与y轴交于C点,过点A作AH⊥y轴,垂足为H,OH=3,tan∠AOH=,点B的坐标为(m,-2).
(1)求△AHO的周长;
(2)求该反比例函数和一次函数的解析式.
【答案】(1)△AHO的周长为12;(2) 反比例函数的解析式为y=,一次函数的解析式为y=-x+1.
【解析】试题分析: (1)根据正切函数,可得AH的长,根据勾股定理,可得AO的长,根据三角形的周长,可得答案;
(2)根据待定系数法,可得函数解析式.
试题解析:(1)由OH=3,tan∠AOH=,得
AH=4.即A(-4,3).
由勾股定理,得
AO==5,
△AHO的周长=AO+AH+OH=3+4+5=12;
(2)将A点坐标代入y=(k≠0),得
k=-4×3=-12,
反比例函数的解析式为y=;
当y=-2时,-2=,解得x=6,即B(6,-2).
将A、B点坐标代入y=ax+b,得
,
解得,
一次函数的解析式为y=-x+1.
考点:反比例函数与一次函数的交点问题.
【题型】解答题
【结束】
25
【题目】如图,已知点A、C分别在∠GBE的边BG、BE上,且AB=AC,AD∥BE,∠GBE的平分线与AD交于点D,连接CD.
求证:①AB=AD;
②CD平分∠ACE.
查看答案和解析>>
科目: 来源: 题型:
【题目】将一块正方形和一块等腰直角三角形如图1摆放.
(1)如果把图1中的△BCN绕点B逆时针旋转90°,得到图2,则∠GBM= ;
(2)将△BEF绕点B旋转.
①当M,N分别在AD,CD上(不与A,D,C重合)时,线段AM,MN,NC之间有一个不变的相等关系式,请你写出这个关系式: ;(不用证明)
②当点M在AD的延长线上,点N在DC的延长线时(如图3),①中的关系式是否仍然成立?若成立,写出你的结论,并说明理由;若不成立,写出你认为成立的结论,并说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】.阅读:若x满足(80﹣x)(x﹣60)=30,求的值.
解:设(80﹣x)=a,(x﹣60)=b,则(80﹣x)(x﹣60)=ab=30,a+b=(80﹣x)+(x﹣60)=20,
所以(80﹣x)2+(x﹣60)2=a2+b2=(a+b)2﹣2ab=202﹣2×30=340,
请仿照上例解决下面的问题:
(1)若 x 满足(30﹣x)(x﹣20)=﹣10,求(30﹣x)2+(x﹣20)2的值.
(2)如图,正方形 ABCD 的边长为 x,AE=10,CG=25,长方形 EFGD 的面积是500,四边形 NGDH 和 MEDQ 都是正方形,PQDH 是长方形,那么图中阴影部分的面积等于_____(结果必须是一个具体数值).
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,某市有一块长为(3a+b)米、宽为(2a+b)米的长方形地块,中间是边长为(a+b)米的正方形,规划部门计划将在中间的正方形修建一座雕像,四周的阴影部分进行绿化.
(1)绿化的面积是多少平方米?(用含字母a、b的式子表示)
(2)求出当a=10,b=12时的绿化面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,在以O为原点的直角坐标系中,抛物线的顶点为A(1,4),且经过点B(2,3),与x轴交于C、D两点.
(1)求直线OB的函数表达式和该抛物线的函数表达式;
(2)如图1,点P是x轴上方的抛物线上一动点,过点P作直线PF⊥x轴于点F,交直线OB于点E.若PE=3EF,求出P点的横坐标;
(3)如图2,点M是抛物上的一个动点,且在直线OB的上方,过点M作x轴的平行线与直线OB交于点N,T是抛物线对称轴上一点,当MN最大且△MDT周长最小时,直接写出T的坐标.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,分别以点A和点B为圆心,大于AB的长为半径画弧,两弧相交于点M,N,作直线MN,交BC于点D,连接AD,若△ADC的周长为8,AB=6,则△ABC的周长为( )
A. 20 B. 22 C. 14 D. 16
查看答案和解析>>
科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,对于点P(a,b)和点Q(a,b'),给出如下定义:
若b'=,则称点Q为点P的限变点.例如:点(3,﹣2)的限变点的坐标是(3,﹣2),点(﹣1,5)的限变点的坐标是(﹣1,﹣5).
(1)①点(﹣,1)的限变点的坐标是 ;
②在点A(﹣1,2),B(﹣2,﹣1)中有一个点是函数y=图象上某一个点的限交点,这个点是 ;
(2)若点P在函数y=﹣x+3的图象上,当﹣2≤x≤6时,求其限变点Q的纵坐标b'的取值范围;
(3)若点P在关于x的二次函数y=x2﹣2tx+t2+t的图象上,其限变点Q的纵坐标b'的取值范围是b'≥m或b'<n,其中m>n.令s=m﹣n,求s关于t的函数解析式及s的取值范围.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知,在△ABC中,∠A=90°,AB=AC,点D为BC的中点.
(1)如图①,若点E、F分别为AB、AC上的点,且DE⊥DF,求证:BE=AF;
(2)若点E、F分别为AB、CA延长线上的点,且DE⊥DF,那么BE=AF吗?请利用图②说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com