科目: 来源: 题型:
【题目】如图,在等边△ABC中,D、E分别是BC、AC上的动点且BD=CE,连接AD与BE相交于点F,连接CF,下列结论:①△ABD≌△BCE;②∠AFB=120°;③若BD=CD,则FA=FB=FC;④∠AFC=90°,则AF=3BF,其中正确的结论共有( )
![]()
A.1个B.2个C.3个D.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在矩形MNPQ中,动点R从点N出发,沿着N-P-Q-M方向移动至M停止,设R移动路程为x,MNR面积为y,那么y与x的关系如图②,下列说法不正确的是( )
![]()
A.当x=2时,y=5B.矩形MNPQ周长是18
C.当x=6时,y=10D.当y=8时,x=10
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线y=ax2+bx过点A(1,4)、B(﹣3,0),过点A作直线AC∥x轴,交抛物线于另一点C,在x轴上有一点D(4,0),连接CD.
![]()
(1)求抛物线的表达式;
(2)若在抛物线上存在点Q,使得CD平分∠ACQ,请求出点Q的坐标;
(3)在直线CD的下方的抛物线上取一点N,过点N作NG∥y轴交CD于点G,以NG为直径画圆在直线CD上截得弦GH,问弦GH的最大值是多少?
(4)一动点P从C点出发,以每秒1个单位长度的速度沿C﹣A﹣D运动,在线段CD上还有一动点M,问是否存在某一时刻使PM+AM=4?若存在,请直接写出t的值;若不存在,请说明理由.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图所示,AB∥DE,AC∥DF,AC=DF下列条件中,不能判断△ABC≌△DEF的是( )
![]()
A. AB=DE B. ∠B=∠E C. EF=BC D. EF∥BC
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在
中,已知
,
,
是
的高,
,
,直线
,动点
从点
开始沿射线
方向以每秒
厘米的速度运动,动点
也同时从点
开始在直线
上以每秒
厘米的速度向远离
点的方向运动,连接
、
,设运动时间为
秒.
![]()
(1)请直接写出
、
的长度(用含有
的代数式表示):
______
,
______
;
(2)当
为多少时,
的面积为
?
(3)请利用备用图探究,当
___________秒时,
.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中,AB=AC,BE⊥AC于E,且D、E分别是AB、AC的中点,延长BC至点F,使CF=CE.
(1)∠ABC的度数.
(2)求证:BE=FE.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,四边形OABC是等腰梯形,OA∥BC,A的坐标(4,0),B的坐标(3,2),点M从O点以每秒3个单位的速度向终点A运动;同时点N从B点出发以每秒1个单位的速度向终点C运动(M到达点A后停止,点N继续运动到C点停止),过点N作NP⊥OA于P点,连接AC交NP于Q,连接MQ,如动点N运动时间为t秒.
(1)求直线AC的解析式;
(2)当t取何值时?△AMQ的面积最大,并求此时△AMQ面积的最大值;
(3)是否存在t的值,使△PQM与△PQA相似?若存在,求出t的值;若不存在,请说明理由.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图是由边长为
的若干个小正方形拼成的方格图,
的顶点
,
,
均在小正方形的顶点上.
![]()
(1)在图中建立恰当的平面直角坐标系,且使点
的坐标为
,并写出
,
两点的坐标;
(2)在(1)中建立的平面直角坐标系内画出
关于
轴对称的
;
(3)求
的面积.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC中,∠BAC=90°,AB=AC=1,点D是BC上一个动点(不与B、C重合),在AC上取E点,使∠ADE=45°.
(1)试判断△ABD与△DCE是否相似并说明理由;
(2)设BD=x,AE=y,求y关于x的函数关系式;并指出当点D在BC上运动(不与B、C重合)时,AE是否存在最小值?若存在,求出最小值;若不存在,说明理由;
(3)当△ADE是等腰三角形时,求AE的长.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com