科目: 来源: 题型:
【题目】在平面直角坐标系xOy中,二次函数y=ax2+bx+c(a≠0)的图象经过A(0,4),B(2,0),C(-2,0)三点.
(1)求二次函数的表达式;
(2)在x轴上有一点D(-4,0),将二次函数的图象沿射线DA方向平移,使图象再次经过点B.
①求平移后图象顶点E的坐标;
②直接写出此二次函数的图象在A,B两点之间(含A,B两点)的曲线部分在平移过程中所扫过的面积.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】有这样一个问题:探究函数y=
﹣2x的图象与性质.
小东根据学习函数的经验,对函数y=
﹣2x的图象与性质进行了探究.
下面是小东的探究过程,请补充完整:
(1)函数y=
﹣2x的自变量x的取值范围是_______;
(2)如表是y与x的几组对应值
x | … | ﹣4 | ﹣3.5 | ﹣3 | ﹣2 | ﹣1 | 0 | 1 | 2 | 3 | 3.5 | 4 | … |
y | … | ﹣ | ﹣ |
|
|
| 0 | ﹣ | ﹣ | m |
|
| … |
则m的值为_______;
(3)如图,在平面直角坐标系中,描出了以上表中各对对应值为坐标的点.根据描出的点,画出该函数的图象;
(4)观察图象,写出该函数的两条性质________.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,直线y=kx+m与双曲线y=﹣
相交于点A(m,2).
(1)求直线y=kx+m的表达式;
(2)直线y=kx+m与双曲线y=﹣
的另一个交点为B,点P为x轴上一点,若AB=BP,直接写出P点坐标.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:关于x的一元二次方程kx2﹣(4k+1)x+3k+3=0(k是整数).
(1)求证:方程有两个不相等的实数根;
(2)若方程的两个实数根都是整数,求k的值.
查看答案和解析>>
科目: 来源: 题型:
【题目】已知:如图,四边形ABCD中,AD∥BC,AD=CD,E是对角线BD上一点,且EA=EC.
(1)求证:四边形ABCD是菱形;
(2)如果∠BDC=30°,DE=2,EC=3,求CD的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,△ABC内接于⊙O,AB=AC,CO的延长线交AB于点D.
(1)求证:AO平分∠BAC;
(2)若BC=6,sin∠BAC=
,求AC和CD的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】已知抛物线的顶点坐标为M(1,4),且经过点N(2,3),与x轴交于A,B两点(点A在点B左侧),与y轴交于点C、设直线CM与x轴交于点D.
(1)求抛物线的解析式.
(2)在抛物线的对称轴上是否存在点P,使以点P为圆心的圆经过A、B两点,且与直线CD相切?若存在,求出P的坐标;若不存在.请说明理由.
(3)设直线y=kx+2与抛物线交于Q、R两点,若原点O在以QR为直径的圆外,请直接写出k的取值范围.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】综合探究:
(1)如图1,AB是⊙O的直径,点C、D在上,
.若AB=13,BC=12,直接写出CD的长;
(2)如图2,AB、CD是⊙O的两条互相垂直的直径,E是劣弧AD上一点,AE的延长线交CD的延长线于F,过O作OG∥AE交CE于G,求AE:CG的值;
(3)如图3,∠ACB=90°,AC=BC,点P为AB的中点.若点E满足AE=
AC,CE=CA,点Q为AE的中点,则
= .
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某商家经销一种绿茶,用于装修门面已投资3000元.已知绿茶每千克成本50元,经研究发现销量y(kg)随销售单价x(元/kg)的变化而变化,具体变化规律如表所示:
销售单价x(元/kg) | … | 70 | 75 | 80 | 85 | 90 | … |
月销售量y(kg) | … | 100 | 90 | 80 | 70 | 60 | … |
设该绿茶的月销售利润为w(元)(销售利润=单价×销售量﹣成本)
(1)请根据上表,写出y与x之间的函数关系式(不必写出自变量x的取值范围);
(2)求w与x之间的函数关系式(不必写出自变量x的取值范围),并求出x为何值时,w的值最大?
(3)若在第一个月里,按使w获得最大值的销售单价进行销售后,在第二个月里受物价部门干预,销售单价不得高于80元,要想在全部收回装修投资的基础上使第二个月的利润至少达到1700元,那么第二个月时里应该确定销售单价在什么范围内?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,AB为⊙O的直径,直线l经过⊙O上一点C,过点A作AD⊥l于点D,交⊙O于点E,AC平分∠DAB.
(1)求证:直线l是⊙O的切线;
(2)若DC=4,DE=2,求线段AB的长.
![]()
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com