科目: 来源: 题型:
【题目】如图,在
中,
,作
的角平分线交
于点
,以
为圆心,
为半径作圆.
![]()
(1)依据题意补充完整图形;(尺规作图,保留作图痕迹,不写作法)
(2)求证:
与直线
相切;
(3)在(2)的条件下,若
与直线
相切的切点为
,
与
相交于点
,连接
,
;其中
,
,求
的长.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,正方形
,点
、
分别在边
、
上,且
,把
绕点
沿逆时针方向旋转90°得到
,连接
交
、
于点
、
,连接
,并在
截取
,连接
.有如下结论:
①
;
②
始终平分
;
③
;
④
;
⑤
垂直平分
.
上述结论中,所有正确的个数是( )
![]()
A.5个B.4个
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1,长、宽均为3,高为8的长方体容器,放置在水平桌面上,里面盛有水,水面高为6,绕底面一棱长进行旋转倾斜后,水面恰好触到容器口边缘,图2是此时的示意图,则图2中水面高度为( )
![]()
A.
B.
C.
D.![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】定义:若两条抛物线在x轴上经过两个相同点,那么我们称这两条抛物线是“同交点抛物线”,在x轴上经过的两个相同点称为“同交点”,已知抛物线y=x2+bx+c经过(﹣2,0)、(﹣4,0),且一条与它是“同交点抛物线”的抛物线y=ax2+ex+f经过点(﹣3,3).
(1)求b、c及a的值;
(2)已知抛物线y=﹣x2+2x+3与抛物线yn=
x2﹣
x﹣n(n为正整数)
①抛物线y和抛物线yn是不是“同交点抛物线”?若是,请求出它们的“同交点”,并写出它们一条相同的图像性质;若不是,请说明理由.
②当直线y=
x+m与抛物线y、yn,相交共有4个交点时,求m的取值范围.
③若直线y=k(k<0)与抛物线y=﹣x2+2x+3与抛物线yn =
x2﹣
x﹣n (n为正整数)共有4个交点,从左至右依次标记为点A、点B、点C、点D,当AB=BC=CD时,求出k、n之间的关系式
查看答案和解析>>
科目: 来源: 题型:
【题目】(1)如图1,在△ABC中,E是BC的中点,P是AE的中点,则称CP是△ABC的“双中线”.若∠ACB=90°,AC=3,AB=5,则CP=________;
(2)在图2中,E是正方形ABCD一边上的中点,P是BE上的中点,则称AP是正方形ABCD的“双中线”.若AB=4,则AP的长为__________;(按图示辅助线求解)
(3)在图3中,AP是矩形ABCD的“双中线”.若AB=4,BC=6,请仿照(2)中的方法求出AP的长,并说明理由;
(4)在图4中,AP是□ABCD的“双中线”,若AB=4,BC=10,∠BAD=120°,求△ABP的周长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】边长为4的正方形ABCD中,点E是BC边上的一个动点,连接DE,交AC于点N,过点D作DF⊥DE,交BA的延长线于点F,连接EF,交AC于点M.
![]()
(1)判定△DFE的形状,并说明理由;
(2)设CE=x,△AMF的面积为y,求y与x之间的函数关系式;并求出当x为何值时y有最大值?最大值是多少?
查看答案和解析>>
科目: 来源: 题型:
【题目】如图1是一种纸巾盒,由盒身和圆弧盖组成,通过圆弧盖的旋转来开关纸巾盒.如图2是其侧面简化示意图,已知矩形
的长
,宽
,圆弧盖板侧面
所在圆的圆心
是矩形
的中心,绕点
旋转开关(所有结果保留小数点后一位).
![]()
(1)求
所在
的半径长及
所对的圆心角度数;
(2)如图3,当圆弧盖板侧面
从起始位置
绕点
旋转
时,求
在这个旋转过程中扫过的的面积.
参考数据:
,
,
取3.14.
查看答案和解析>>
科目: 来源: 题型:
【题目】如图,在△ABC中,AB=BC,以BC为直径作⊙ O交AC于点E,过点E作AB的垂线交AB于点F,交CB的延长线于点G.
(1)求证:EG是⊙O的切线;
(2)若BG=OB,AC=6,求BF的长.
![]()
查看答案和解析>>
科目: 来源: 题型:
【题目】某校九年级(1)班所有学生参加2010年初中毕业生升学体育测试,根据测试评分标准,将他们的成绩进行统计后分为A、B、C、D四等,并绘制成如图所示的条形统计图和扇形统计图(未完成),请结合图中所给信息解答下列问题:
![]()
⑴ 九年级(1)班参加体育测试的学生有_________人;
⑵ 将条形统计图补充完整;
⑶ 在扇形统计图中,等级B部分所占的百分比是___,等级C对应的圆心角的度数为___°;
⑷ 若该校九年级学生共有850人参加体育测试,估计达到A级和B级的学生共有___人.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com