相关习题
 0  363157  363165  363171  363175  363181  363183  363187  363193  363195  363201  363207  363211  363213  363217  363223  363225  363231  363235  363237  363241  363243  363247  363249  363251  363252  363253  363255  363256  363257  363259  363261  363265  363267  363271  363273  363277  363283  363285  363291  363295  363297  363301  363307  363313  363315  363321  363325  363327  363333  363337  363343  363351  366461 

科目: 来源: 题型:

【题目】阅读下列两则材料,回答问题:

材料一:因为所以我们将称为一対有理化因式,有时我们可以通过构造有理化因式求值

例如:已知,求的值

解:,∵

材料二:如图,点Ax1y1),点Bx2y2),所以AB为斜边作RtABC,则Cx2y1),于是AC|x1x2|BC|y1y2|,所以AB,反之,可将代数式的值看作点(x1y1)到点(x2y2)的距离.例如,所以可将代数式的值看作点(xy)到点(1,﹣1)的距离;

1)利用材料一,解关于x的方程:,其中x≤2

2)利用材料二,求代数式的最小值,并求出此时yx的函数关系式,写出x的取值范围.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,四边形ABCD是菱形,⊙O经过点ACD,与BC相交于点E,连接ACAE

1)若∠D78°,求∠EAC的度数.

2)若∠EACα,则∠B的度数为  (直接用含α的式子表示)

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,AB是⊙O的直径,弦BC=6cm,AC=8cm.若动点P2cm/s的速度从B点出发沿着B→A的方向运动,点Q1cm/s的速度从A点出发沿着A→C的方向运动,当点P到达点A时,点Q也随之停止运动.设运动时间为t(s),当APQ是直角三角形时,t的值为___________

查看答案和解析>>

科目: 来源: 题型:

【题目】《如果想毁掉一个孩子,就给他一部手机!》这是2017年微信圈一篇热传的文章.国际上,法国教育部宣布从 2018 9月新学期起小学和初中禁止学生使用手机.为了解学生手机使用情况,某学校开展了手机伴我健康行主题活动,他们随机抽取部分学生进行使用手机目的每周使用手机的时间的问卷调查,并绘制成如图①,②的 统计图,已知查资料的人数是 40人.请你根据以上信息解答下列问题:

(1)在扇形统计图中,玩游戏对应的百分比为______,圆心角度数是______度;

(2)补全条形统计图;

(3)该校共有学生2100人,估计每周使用手机时间在2 小时以上(不含2小时)的人数.

查看答案和解析>>

科目: 来源: 题型:

【题目】在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC的顶点A、C的坐标分别为(﹣4,5),(﹣1,3).

(1)请在如图所示的网格平面内作出平面直角坐标系;

(2)请作出ABC关于y轴对称的A′B′C′;

(3)点B′的坐标为   

(4)ABC的面积为   

查看答案和解析>>

科目: 来源: 题型:

【题目】某公司销售一种新型节能产品,现准备从国内和国外两种销售方案中选择一种进行销售.若只在国内销售,销售价格y(元/件)与月销量x(件)的函数关系式为y=x+150,成本为20元/件,无论销售多少,每月还需支出广告费62500元,设月利润为w(元).若只在国外销售,销售价格为150元/件,受各种不确定因素影响,成本为a元/件(a为常数,10≤a≤40),当月销量为x(件)时,每月还需缴纳x2元的附加费,设月利润为w(元).

(1)当x=1000时,y= 元/件,w= 元;

(2)分别求出w,w与x间的函数关系式(不必写x的取值范围);

(3)当x为何值时,在国内销售的月利润最大?若在国外销售月利润的最大值与在国内销售月利润的最大值相同,求a的值.

查看答案和解析>>

科目: 来源: 题型:

【题目】一辆慢车和一辆快车沿相同路线从A地到B所行驶的路程与时间的函数图象如图所示下列说法正确的有()

快车追上慢车需6小时

慢车比快车早出发2小时

快车速度为46km/h

慢车速度为46km/h

AB两地相距828km

快车14小时到达B

A. 2 B. 3 C. 4 D. 5

查看答案和解析>>

科目: 来源: 题型:

【题目】已知:如图,在四边形 ABCD 中, ABCD ACB =90°, AB=10cm BC=8cm OD 垂直平分 A C.点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s;当一个点停止运动,另一个点也停止运动.过点 P PEAB,交 BC 于点 E,过点 Q QFAC,分别交 AD OD 于点 F G.连接 OPEG.设运动时间为 t ( s )0t5 ,解答下列问题:

1)当 t 为何值时,点 E BAC 的平分线上?

2)设四边形 PEGO 的面积为 S(cm2) ,求 S t 的函数关系式;

3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由;

4)连接 OE OQ,在运动过程中,是否存在某一时刻 t ,使 OEOQ?若存在,求出t 的值;若不存在,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】问题提出:

如图,图①是一张由三个边长为 1 的小正方形组成的“L”形纸片,图②是一张 a× b 的方格纸(a× b的方格纸指边长分别为 ab 的矩形,被分成 a× b个边长为 1 的小正方形,其中 a≥2 b≥2,且 ab 为正整数) .把图①放置在图②中,使它恰好盖住图②中的三个小正方形,共有多少种不同的放置方法?

问题探究:

为探究规律,我们采用一般问题特殊化的策略,先从最简单的情形入手,再逐次递进,最后得出一般性的结论.

探究一:

把图①放置在 2× 2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?

如图③,对于 2×2的方格纸,要用图①盖住其中的三个小正方形,显然有 4 种不同的放置方法.

探究二:

把图①放置在 3×2的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?

如图④,在 3×2的方格纸中,共可以找到 2 个位置不同的 2 ×2方格,依据探究一的结论可知,把图①放置在 3×2 的方格纸中,使它恰好盖住其中的三个小正方形,共有 2 ×48

不同的放置方法.

探究三:

把图①放置在 a ×2 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?

如图⑤, a ×2 的方格纸中,共可以找到______个位置不同的 2×2方格,依据探究一的结论可知,把图①放置在 a× 2 的方格纸中,使它恰好盖住其中的三个小正方形,共有______种不同的放置方法.

探究四:

把图①放置在 a ×3 的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?

如图⑥,在 a ×3 的方格纸中,共可以找到______个位置不同的 2×2方格,依据探究一的结论可知,把图①放置在 a ×3 的方格纸中,使它恰好盖住其中的三个小正方形,共有_____种不同的放置方法.

……

问题解决:

把图①放置在 a ×b的方格纸中,使它恰好盖住其中的三个小正方形,共有多少种不同的放置方法?(仿照前面的探究方法,写出解答过程,不需画图.)

问题拓展:

如图,图⑦是一个由 4 个棱长为 1 的小立方体构成的几何体,图⑧是一个长、宽、高分别为 ab c a≥2 b≥2 c≥2 ,且 abc 是正整数)的长方体,被分成了a×b×c个棱长为 1 的小立方体.在图⑧的不同位置共可以找到______个图⑦这样的几何体.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,某旅游景区为方便游客,修建了一条东西走向的木栈道 AB ,栈道 AB 与景区道路CD 平行.在 C 处测得栈道一端 A 位于北偏西 42°方向,在 D 处测得栈道另一端 B 位于北偏西 32°方向.已知 CD 120 m BD 80 m ,求木栈道 AB 的长度(结果保留整数)

(参考数据:)

查看答案和解析>>

同步练习册答案