相关习题
 0  363692  363700  363706  363710  363716  363718  363722  363728  363730  363736  363742  363746  363748  363752  363758  363760  363766  363770  363772  363776  363778  363782  363784  363786  363787  363788  363790  363791  363792  363794  363796  363800  363802  363806  363808  363812  363818  363820  363826  363830  363832  363836  363842  363848  363850  363856  363860  363862  363868  363872  363878  363886  366461 

科目: 来源: 题型:

【题目】已知二次函数.

1)用配方法求出该函数图象的顶点坐标和对称轴;

2)在如图所示的平面直角坐标系中画出该函数的大致图象.

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,抛物线的对称轴为直线,且过点,有下列结论:

;②;③;④;⑤,其中正确的结论有( )

A.①③⑤B.①②⑤C.①④⑤D.③④⑤

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,已知抛物线轴交于两点,,交轴于点,对称轴是直线

(1)求抛物线的解析式及点的坐标;

(2)连接是线段上一点,关于直线的对称点正好落在上,求点的坐标;

(3)动点从点出发,以每秒2个单位长度的速度向点运动,过轴的垂线交抛物线于点,交线段于点.设运动时间为秒.

①若相似,请直接写出的值;

能否为等腰三角形?若能,求出的值;若不能,请说明理由.

查看答案和解析>>

科目: 来源: 题型:

【题目】互联网+”时代,网上购物备受消费者青睐.某网店专售一款休闲裤,其成本为每条40元,当售价为每条80元时,每月可销售100条.为了吸引更多顾客,该网店采取降价措施.据市场调查反映:销售单价每降1元,则每月可多销售5条.设每条裤子的售价为(为正整数),每月的销售量为条.

(1)直接写出的函数关系式;

(2)设该网店每月获得的利润为元,当销售单价降低多少元时,每月获得的利润最大,最大利润是多少?

(3)该网店店主热心公益事业,决定每月从利润中捐出200元资助贫困学生.为了保证捐款后每月利润不低于4220元,且让消费者得到最大的实惠,该如何确定休闲裤的销售单价?

查看答案和解析>>

科目: 来源: 题型:

【题目】如图,的切线,切点为的直径,连接.过点作于点,交,连接

(1)求证:的切线;

(2)求证:的内心;

(3),求的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】为积极参与鄂州市全国文明城市创建活动,我市某校在教学楼顶部新建了一块大型宣传牌,如下图.小明同学为测量宣传牌的高度,他站在距离教学楼底部6米远的地面处,测得宣传牌的底部的仰角为,同时测得教学楼窗户处的仰角为(在同一直线上).然后,小明沿坡度的斜坡从走到处,此时正好与地面平行.

(1)求点到直线的距离(结果保留根号)

(2)若小明在处又测得宣传牌顶部的仰角为,求宣传牌的高度(结果精确到0.1米,)

查看答案和解析>>

科目: 来源: 题型:

【题目】某校为了解全校学生对新闻、体育、动画、娱乐、戏曲五类电视节目的喜爱情况,随机选取该校部分学生进行调查,要求每名学生从中选出一类最喜爱的电视节目,以下是根据调查结果绘制的统计图表的一部分.

类别

类型

新闻

体育

动画

娱乐

戏曲

人数

11

20

40

4

请你根据以上信息,回答下列问题:

(1)统计表中的值为_______,统计图中的值为______类对应扇形的圆心角为_____度;

(2)该校共有1500名学生,根据调查结果,估计该校最喜爱体育节目的学生人数;

(3)样本数据中最喜爱戏曲节目的有4人,其中仅有1名男生.从这4人中任选2名同学去观赏戏曲表演,请用树状图或列表求所选2名同学中有男生的概率.

查看答案和解析>>

科目: 来源: 题型:

【题目】矩形中,AB=8BC=6,过对角线中点的直线分别交边于点.

(1)求证:四边形是平行四边形;

(2)当四边形是菱形时,求的长.

查看答案和解析>>

科目: 来源: 题型:

【题目】二次函数的图象如图所示,对称轴是直线.下列结论:①;②;③;④(为实数).其中结论正确的个数为( )

A.1B.2C.3D.4

查看答案和解析>>

科目: 来源: 题型:

【题目】如图1,在平面直角坐标系中,直线y=﹣5x+5x轴,y轴分别交于AC两点,抛物线yx2+bx+c经过AC两点,与x轴的另一交点为B

1)求抛物线解析式及B点坐标;

2)若点Mx轴下方抛物线上一动点,连接MAMBBC,当点M运动到某一位置时,四边形AMBC面积最大,求此时点M的坐标及四边形AMBC的面积;

3)如图2,若P点是半径为2的⊙B上一动点,连接PCPA,当点P运动到某一位置时,PC+PA的值最小,请求出这个最小值,并说明理由.

查看答案和解析>>

同步练习册答案